簡易檢索 / 詳目顯示

研究生: 林書漢
Lin, Shu-Han
論文名稱: 氯化鋰誘發均質化多孔結構之聚胺酯/奈米碳管複合材料薄膜
LiCl addition improved porosity of polyurethane /carbon nanotubes composite films
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 許景棟
李亭慧
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 57
中文關鍵詞: 氯化鋰聚胺酯多孔薄膜
外文關鍵詞: LiCl, PU, porous, film
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分成兩部份,一為多孔聚胺酯薄膜之透濕度的研究。二為多壁奈米碳管/聚胺酯多孔薄膜之強度的研究。第一部份是討論藉由氯化鋰的添加可以改善聚胺酯薄膜的孔洞結構並增進其透溼度。氯化鋰添加到聚胺酯增進孔洞結構並以透溼度測試確實提升來證明。進一步將透溼度測試與比表面積分析來做比較,可以發現透溼度與孔洞的體積及孔洞大小相關。
    在第二部份中,我們專注於奈米碳管/聚胺酯的機械性質分析,由於聚胺酯屬於高分子,強度並不高,我們利用奈米碳管可做為加強材的特性,將碳管添加到聚胺酯中。此實驗所生成的奈米碳管/聚胺酯多孔薄膜,藉由拉伸試驗得到抗拉強度有確實增強的數據,然而添加到一定比例的碳管,強度就不再增強,且超過臨界比例的碳管也會降低複合材的透濕能力。


    This thesis is divided into two parts. The 1st discusses the porosity improvement of polyurethane (PU) films and water vapor permeability (WVP) by LiCl addition. Addition of LiCl to PU improves the porous structure and is evident by WVP tests. We compare results of the WVP and the BET analyses and find that WVP is related to size and volume of pores.
    The 2nd part focuses on mechanical property of carbon nanotubes/polyurethane (CNTs/PU) films. Carbon nanotubes (CNTs) act as reinforcing elements and enhance strength of porous PU. Excess of CNTs in PU reduces PU strength and also WVP.

    摘要 I Abstract II 致謝 III 總目錄 Ⅳ 圖目錄 Ⅶ 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2-1高分子材料簡介 3 2-1-1 高分子材料 3 2-1-2 聚胺酯(Polyurethane, PU) 4 2-2 多孔材料的簡介 7 2-2-1 多孔材料的特性 7 2-2-2 多孔薄膜形成的機制 8 2-3 奈米碳管簡介 11 2-3-1 奈米碳管的特性及結構 11 2-3-2 奈米碳管之機械性質 15 2-3-3 奈米碳管/高分子的複合材料 16 第三章 實驗步驟與儀器設備 19 3-1實驗藥品 19 3-2 儀器設備 21 3-3實驗流程 24 3-3-1 氯化鋰/聚胺酯薄膜的製備 26 3-3-2 多壁奈米碳管/氯化鋰/聚胺酯薄膜的製備 27 3-3-3 表面顯微結構的觀測 28 3-3-4 比表面積與孔隙度的量測 29 3-3-5 透溼度的量測 30 3-3-6 拉伸試驗 33 第四章 結果與討論 34 4-1 多孔聚胺酯薄膜 34 4-1-1 孔洞結構形成機制 34 4-1-2 顯微結構分析 36 4-1-3 孔隙度的分析 40 4-1-4 顯微結構與孔隙結構影響透濕度分析 43 4-2 多壁奈米碳管/聚胺酯多孔薄膜 46 4-2-1 顯微結構的分析 46 4-2-2 透溼度的分析 49 4-2-3 拉伸試驗分析 51 第五章 結論 53 第六章 文獻參考 54

    [1] 徐武軍編著, 高分子材料導論 (2004).
    [2] 環球聚胺酯網 第101期(2010年10月).
    [3] L. Yang 1, A.T. Paulson, Mechanical and water vapour barrier properties of edible gellan films. Food research international, 33(7) 563-570 (2000).
    [4] 山行著豪哥, Gore-tex的迷思(2008)
    [5] 百度百科 多孔材料http://baike.baidu.com/view/1316804.htm
    [6] 趙文元, 王亦軍, 功能高分子材料化學, 北京市, 化學工業, 295 (1996).
    [7] X.L. Yu, H.F Xiang, Y.H. Long, N. Zhao, X.L. Zhang, J.A. Xu, Preparation of porous poly-acrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O, Materials Letters 64(22) 2407-2409 (2010).
    [8] J. Aitkek, Breath Figures, Nature 90 619-621 (1911).
    [9] Rayleigh, Breath Figures, Nature 86 416-418 (1911).
    [10] U. H.F. Bunz, Breath figures as a dynamic templating method for polymers and nanomaterials, Advanced Materials 18(8) 973-989 (2006).
    [11] G. Widawski, M. Rawiso, and B. Francois, Self-Organized Honeycomb Morphology of Star-Polymer Polystyrene Film. Nature 369(6479) 387-389 (1994).
    [12] M. Srinivasarao, Three-dimensionally ordered array of air bubbles in a polymer film, Science 292 79-83 (2001).
    [13] S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348) 56-58 (1991).
    [14] M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Nature 381(6581) 384 (1996).
    [15] M. S. Dresselhaus and P. C. Eklund, Phonons in carbon nanotubes, Advances in Physics 49(6) 705-814 (2000).
    [16] E. T. Thostenson, Z. F. Ren and T. W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology 61(13) 1899-1912 (2001).
    [17] M.F. Yu, B. S. File, S. Arepalli and R. S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Physical Review Letters 84(24) 5552-5555 (2000).
    [18] M.F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load, Science 287(5453) 637-640 (2000).
    [19] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. ForrÓ, W. Benoit and L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics A-Materials science and processing 69(3) 255-260 (1999).
    [20] S. Berber, Y. K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Physical Review Letters 84(20) 4613-4616 (2000).
    [21] A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer and R.E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science 273(5274) 483-487 (1996).
    [22] 張雅筑, 常壓下以電暈方式製備奈米碳管或奈米結構 ,國立清華大學材料科學與工程研究所碩士論文 M.440.2 2007 26 (2007).
    [23] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith and R. E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physical Letters 313(1-2) 91-97(1999).
    [24] 成會明 奈米碳管 五南出版 (2004).
    [25] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science 287(5453) 637-640 (2000).
    [26] Y. H. Yang, W.Z. Li, Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy, Applied Physics Letters 98(4) (2011).
    [27] J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N. A. Burnham, L. Forro, Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Advanced Materials 11(2) 161-165 (1999).
    [28] S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, Mechanical and physical properties on carbon nanotube, Journal of Physics and Chemistry of Solids 61(7) 1153-1158 (2000).
    [29] S. Muhammad, Applications of percolation theory, Taylor & Francis, ISBN 0-7484-0075-3 (cloth), ISBN 0-7484-0076-1 (paper) (1994).
    [30] D. Stauffer, Introduction to percolation theory, ISBN 0 7484 0253 5 (1985).
    [31] G. Geoffrey, Percolation, Springer Verlag (1989).
    [32] 林敬祐, 奈米碳管/高分子奈米複合材料薄膜之導電性質研究 ,國立清華大學材料與工程學系研究所碩士論文M 440.2 2006 80 (2006).
    [33] X.L. Xie, Y. W. Mai, X. P. Zhou, Dispersion and alignment of carbon nanotube in polymer matrix, Materials Science and Engineering R-Reports 49(4) 89-112 (2005).
    [34] F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, K. Schulte, Carbon nanotube-reinforced epoxy composite: enhanced stiffness and fracture toughness at low CNT content, Composites Science and Technology 64(15) 2363-2371 (2004).
    [35] M. K. Kumaran, Interlaboratory comparison of the ASTM standard test methods for water vapor transmission of materials(E96-95), Journal of Testing and Evaluation 26(2) 83-88 (1998).
    [36] Labthink Instruments, An Outline of Standard ASTM E96 for Cup Method Water Vapor Permeability Testing, http://www.labthink.cn.
    [37] 楊正弘 美國康塔儀器公司訓練課程 多孔材料的孔分析技術 http://wenku.baidu.com/view/4f2544ec0975f46527d3e1b4.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE