簡易檢索 / 詳目顯示

研究生: 潘志華
Pun, Chi Wa
論文名稱: 光激發共軛高分子構形引起熵的改變以及在分子擴散的控制
Conformation-induced entropy changes of optically excited conjugated polymer and their uses for the control over molecular diffusion
指導教授: 楊長謀
Yang, Chang Mou
口試委員: 許聯崇
戴子安
陳建中
張濬智
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 137
中文關鍵詞: MEH-PPV溶劑蒸氣退火毛細力亂度交互作用常數相分離
外文關鍵詞: conjugated polymers, Light absorption, solvent absorption, interaction parameter, photon absorption, mechanical stresses
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討含共軛高分子(MEH-PPV)的高分子薄膜(25 nm - 100 nm),經過光罩曝光與同步溶劑(甲苯)蒸氣退火,因共軛分子MEH-PPV構型在光激發後的改變,造成薄膜內暗區與曝光區之間的分子流動。我們深入探討MEH-PPV的構型變化、亂度效應、以及擴散行為,分別藉著控制MEH-PPV濃度、薄膜厚度、與照光量,觀察其所引起的分子流動,和發光行為的變化。
    當MEH-PPV受外來光源照射而吸收光子時,分子電子軌域從基態提到受激態,並牽動分子鏈原子核骨架,帶來構型的改變,導致分子亂度下降和自由能增加。在溶劑蒸氣退火的條下,當此含有共軛高分子MEH-PPV的薄膜,同時也混摻有光惰性高分子聚苯乙烯(polystyrene, PS)時,光罩曝光下的高分子會由暗區流到曝光區(亮區)。此分子流動的行為,並不隨膜厚而改變,顯示因厚度差距誘導出毛細力對於高分子在這超分子尺度的移動行為中,僅具有部分的影響力。當因照光引起的分子物理變化,因高分子流動得到平衡後,分子流動終將停止。我們發現,不同的薄膜厚度,最後在暗區都得到與MEH-PPV濃度相同的厚度分率,顯示原在暗區的MEH-PPV,在此分子流動過程中,始終停留在暗區,而在暗區與亮區的界面附近,至多僅有MEH-PPV的跨界交換,卻無MEH-PPV的淨流量。因此,此光激發的分子流乃全由PS壟斷,且最終所有的PS都將流到亮區,形成特殊的相分離現象。此PS分子流,乃因亮區僵直MEH-PPV造成局部溶劑吸收上升,而因濃度梯度流向亮區的PS分子流,遠大於僵直MEH-PPV的流動,造成暗/亮區厚度差距,而誘導出毛細力主導的除潤現象。同時,不同的照光強度會影響分子亂度的變化,而影響分子流動速率。經過光罩曝光處理後的共軛高分子MEH-PPV薄膜,其光電行為會因拉伸所造成的分子形變所改變。
    另外,當薄膜MEH-PPV之濃度提高至100%時,光罩曝光下高分子薄膜內的分子流動,其方向是從亮區流到暗區,驅動力仍為激態MEH-PPV分子,為降低其自由能,而引起的分子擴散。此外,因照光引起的分子劣化(degradation)所造成對此分子流動的效應,在本論文中也有詳細的探討與分析。
    最後,我們嘗試利用二元與三元的高分子溶液Flory-Huggins理論,並引入亂度效應於交互作用常數(Xs),深入探討在本實驗中,因光罩曝光引起的分子亂度變化,對暗/亮區之間分子流動的影響。我們發現,溶劑分子扮演極為重要的角色。在溶劑退火時,照光區因共軛高分子的亂度下降,而導致溶劑吸收較暗區為快且多,導致PS在溶劑退火過程中,因高分子濃度梯度而由暗區往亮區擴散,造成高分子的流動現象。當亮/暗區之間的厚度差異超越某臨界值後,毛細力開始介入作用,將能移動的高分子都由暗區移往亮區。很明顯地因為MEH-PPV遠較PS難於移動,所以暗區所有的PS最後都在毛細力的作用下,游到亮區。此毛細力引起的PS遷移量,也能由此理論分析獲得。
    此光罩曝光/溶劑退火的過程,能控制共軛高分子在薄膜內的分佈與擴散,除能用以探究高分子在奈米薄膜內的構型、亂度、堆疊,以及對光子吸收的分子反應,並可用以形成精細圖案與濃度梯度,而有在光電元件製造與奈米高分子加工的應用潛力。


    Light absorption of conjugated polymers (such as MEH-PPV) not only promotes excitation of the electronic states, but concomitantly changes the backbone conformation, resulting reduction of molecular entropy and free energy increase. Long-range lateral molecular diffusion can thus be incited to form fine patterns with large height contrast emulating those on the optical mask through which a light is exposed to the molecular assembly mobilized by permeated solvent vapor.
    This entropy effect, however, produces a just exactly reverse pattern when the film contains a blending component of an inert polymer, such as polystyrene (PS), by engenders an opposite molecular flow transferring polymer molecules from the dark regions to the lighted regions which has apparently overwhelmed the MEH-PPV exodus from the lighted regions. This opposite molecular flow was found to be exclusively composed of the optically inert PS molecules that were driven by the concentration gradient resulted from enhanced solvent absorption in the lighted region prompted by the entropy reduction of the MEH-PPV molecules therein. Clearly, the Feakean driving force, however, is smaller than that given rised by the light-induced entropy effect for the conjugated polymer MEH-PPV. Interestingly, the Feakean PS flow was later dominated by a capillary flow when the thickness difference between the dark and lighted regions became large enough to trigger capillary dewetting that evacuates from the dark regions all PS molecules but leaves no changes of the MEH-PPV polulation there, forming a unique phase separation that may be controlled by an operation using optical masks. The constant distribution of the MEH-PPV seems to imply that the net MEH-PPV flows resulted from the competition between those by the light-induced entropy reduction and capillary forces are miniscule. The excess solvent absorption in the lighted regions and the correction of the X interaction parameter due to entropy change (Xs)in the lighted regions were calculated using the Flory-Huggins model on both the binary and tertially systems that have yielded excellent agreement with the observations.
    This prominent effect of light exposure on the molecular motions is consistent with the strong electron-phonon coupling operating in the dramatic photoluminescence enhancements by mechanical stresses observed elsewhere and may be used for precision molecular motion controls and fine patterning. The solvent annealing process under the exposure condition could control conjugated polymer distribution and diffusion within the film, in addition to the polymer can be used to explore the film configuration, entropy, molecular packing, and the molecular reactions with photon absorption. It can be used to form a fine pattern and a concentration gradient, which has the potential applications of nanotechnology in the manufacturing of optoelectronics.

    摘要 2 Abstract 5 目錄 9 表目錄 12 第一章 簡介 21 第二章 文獻回顧 24 2-1 共軛高分子光電特性 24 2-1-1 MEH-PPV分子組態及其特性 24 2-1-2 Exciton、Excimer、Exciplexes和Polaron pair 27 2-1-3 MEH-PPV共軛高分子的摻雜 30 2-1-4 MEH-PPV共軛高分子的熱退火 31 2-1-5 MEH-PPV共軛高分子的除潤現象 33 2-2 Flory-Huggins theory 35 2-2-1溶劑-高分子之作用力參數χ(Interaction parameter) 36 2-2-2溶解參數(Solubility parameter,δ) 39 2-3 光激發發光機制 39 2-4量子侷限效應 41 2-5 照光影響 42 第三章 實驗架構及方法 48 3-1 實驗材料 48 3-2實驗架構 49 3-2實驗步驟 50 3-3-1溶液的配備 50 3-3-2薄膜製備 51 3-3-3樣品量測 51 第四章 結果討論與分析 56 4-1共軛高分子濃度效應與照光溶劑退火的影響 56 4-1-1 分子流動/擴散機制 56 4-1-2 共軛高分子的濃度效應與分子流動機制 67 4-1-3 共軛高分子照光強度效應與分子流動機制 80 4-1-4 純的共軛高分子薄膜及分子流動的機制 89 4-2 共軛高分子 MEH-PPV 光致發光 96 4-2-1共軛高分子濃度效應與螢光光譜的分析 96 4-2-2 基材效應 107 4-3 照光引起分子擴散之初步理論分析 112 4-3-1 Flory Huggins 溶液理論分析 112 4-3-2分子亂度改變對Persistence length的關係 119 第五章 結論 126 第六章 參考文獻 129 附錄 136

    1. Nguyen T. Q.; Doan V.; Schwartz B. J., Journal of Chemical Physics 1999, 110, 4068.
    2. Collini E.; Scholes G. D., Science 2009, 323, 369-373.
    3. Nguyen T. Q.; Wu J.; Doan V.; Schwartz B. J.; Tolbert S. H., Science 2000, 288, 652-656.
    4. Vogelsang J.; Adachi T.; Brazard J.; Vanden Bout D. A. Barbara P. F., Nature Materials 2011, 10, 942-946.
    5. Vogelsang J.; Brazard J.; Adachi T.; Bolinger J. C.; Barbara P. F., Angewandte Chemie International Editon 2011, 50, 2257-2261.
    6. Barbara P. F.; Gesquiere A. J.; Park S. J.; Lee Y. J., Accounts of Chemical Research 2005, 38, 602-610.
    7. Yu J.; Hu D.; Barbara P. F., Science 2000, 289, 1327-1330.
    8. Brédas J. L.; Silbey R., Science 2009, 323, 348-349.
    9. Schwartz B. J., Annual Review of Physical Chemistry 2003, 54, 141-172.
    10. Nguyen T. Q.; Martini I. B.; Liu J.; Schwartz B. J., Journal of Physical Chemistry B 2000, 104, 237-255.
    11. Schwartz B. J., Nature Materials 2008, 7, 427-428.
    12. Collini E.; Scholes, G. D., Science 2009, 323, 369-373.
    13. Blanks R.F.; Prausnitz J.M., I & EC Fundamental 3 ,1, 1964.
    14. Jillian A. Emerson; Daniel T. W. Toolan; Jonathan R. Howse, Eric M. Furst; Thomas H. Epps, Macromolecules 2013, 46, 6533−6540.
    15. Tretiak S.; Saxena A.; Martin R. L.; Bishop. A. R., Physical Review Letters 2002.
    16. Brédas J. L.; Silbey R.; Science 2009, 323, 348-349.
    17. Shinar J.; Partee J., Synthetic Metals 1997, 84, 525-528.
    18. Schwartz B. J., Annual Review of Physical Chemistry 2003, 54, 141-172.
    19. Bolinger J. C.; Traub M. C.; Adachi T.; Barbara P. F., Science 2011, 331, 4.
    20. He G. f.; Li Y. F.; Liu J. ; Yang Y., Applied Physics Letters 2002, 80, 22.
    21. Lee T. W.; Park O. O., Advanced Materials 2000, 12, 11.
    22. Nguyen T. Q.; Martini I. B.; Liu J.; Schwartz B. J., The Journal of Physical Chemistry B 2000, 104, 237-255.
    23. Chen H. J.; Wang L. Y.; Chiu W. Y., European Polymer Journal 2007, 43, 4750–4761.
    24. Liu J.; Guo T. F.; Yang Y., Applied Physics Letters 2002, 91, 3.
    25. 楊志偉,清華大學材料系碩士論文 利用除潤與薄膜拉伸測試研究分子鏈運動對共軛高分子發光之影響 (2006)
    26. 陳炳志,清華大學材料系碩士論文 表面除潤摩擦形變引起之共軛高分子巨大之光電增益 (2010)
    27. Botiz I.; Freyberg P.; Stingelin N.; Yang A. C.-M.; Reiter G., Macromolecules 2013, 46, 2352-2356.
    28. 劉奇京,清華大學材料系碩士論文 共軛高分子奈米薄膜在溶劑蒸氣內之機械穩定度與光電行為變化(2013)
    29. Yang X.; Loos J., Macromolecules 2007, 40, 1353-1362.
    30. Markov D. E.; Amsterdam E.; Blom P. W. M.; Sieva, A. B.; Hummeten J. C., Journal of Physical Chemistry A 2005, 109, 5266-5274.
    31. Halls J. J.; Pichler K.; Friend R. H.; Moratti S C.; Holmes A. B., Applied Physics Letters 1996, 68, 3120.
    32. Markov D. E.; Tanase C.; Blom P. W. M.; Wildeman J., Physical Review B 2005, 72, 045217.
    33. Sheng-Hsiung Y.; Philippe L. R.; Thien-Phap N.; Chain-S. H., Advanced Materials Science 2007, 15, 144-149.
    34. Safar G. A. M. ; Oliveira F. A. C.; Cury L. A.; Righi A.; Barbosa P. L. M.; Dieudonne P.; Lameiras F. S., J. Applied Polymer Science 2006, 102, 5620–5626.
    35. Piacenza M.; Comoretto D.; Burger M.; Morandi V.; Marabelli F.; Martinelli C.; Gianluca M. Farinola ; Cardone A.; Gigli G.; Sala F. D.; Chemical Physics 2009, 10, 1284 – 1290.
    36. Burroughes J. H.; Bradley D. D. C.; Brown A. R.; Marks R. N.; Mackay K.; Friend R. H.; Burns P. L.; Holmes A. B., Nature 1990, 347, 539-541.
    37. Granström M.; Petritsch K.; Arias A. C.; Lux A.; Andersson M. R.; Friend R. H., Nature 1998, 395, 257-260.
    38. Gustafsson G.; Cao Y.; Treacy G. M.; Klavetter F.; Colaneri N.; Heeger A. J., Nature 1992, 357, 477-479.
    39. He G.; Li Y.; Liu J.; Yang Y., Applied Physics Letters 2002, 80, 4247.
    40. Nguyen T. Q.; Doan V.; Schwartz B. J., Journal of Chemical Physics 1999, 110, 4068.
    41. Fox M., Optical properties of solids. Oxford University Press Oxford; New York, 2001.
    42. Greenham, N. C.; Samuel, I. D. W.; Hayes, G. R.; Phillips, R. T.; Kessener, Y. A. R. R.; Moratti, S. C.; Holmes, A. B.; Friend. R. H., Chemical Physics Letters 1995, 241, 89-96.
    43. Jakubiak R.; Christopher J. C.; Wan W. C.; Rothberg L. J., Journal of Physical Chemistry A 1999, 103, 2394-2398.
    44. Yan M.; Rothberg L. J.; Papadimitrakopoulos F.; Galvin M. E.; Miller T. M., Physical Review Letters 1994, 73, 744-747.
    45. Yan M.; Rothberg L. J.; Papadimitrakopoulos F.; Galvin, M. E.; Miller T. M., Physical Review Letters 1994, 72, 1104-1107.
    46. Collini E.; Scholes G. D., Science 2009, 323, 369-373.
    47. Nguyen T. Q.; Wu J.; Doan V.; Schwartz B. J.; Tolbert S. H., Science 2000, 288, 652-656.
    48. Tung K. P.; Chen C. C.; Lee P. W.; Liu Y. W.; Hong T. M.; Hwang K. C.; Hsu, J. H.; White, J. D.; Yang, A. C.-M., ACS Nano 2011, 5, 7296-7302.
    49. Reiter G.; Hamieh M,; Damman P.; Sclavons S.; Gabriele S.; Vilmin T.; Raphaël A. E., Nature Materials 2005, 4, 754-758.
    50. Yang M. H.; Hou S. Y.; Chang Y. L.; Yang A. C.-M., Physical Review Letters 2006, 96, 066105.
    51. Reiter G., Physical Review Letters 1992, 68, 75-78.
    52. Reiter G., Langmuir 1993, 9, 1344-1351.
    53. Lee S. H.; Yoo P. J.; Kwon S. J.; Lee H. H., Journal of Chemical Physics 2004, 121, 4346.
    54. Xiu L.; Shi T.; An. L., Journal of Chemical Physics 2008, 129, 044904.
    55. 陳威群,利用光罩方法調控共軛高分子之電子/聲子交互作用及其長距離側向擴散以生成精密圖樣(2015)
    56. Seemann R.; Herminghaus S. ; Jacobs K., Physical Review Letters 2001, 86,5534.
    57. 張昱崙, 清華大學材料系碩士論文 拘束於旋塗奈米超薄膜內高分子團之分子力、堆積、和形變之量測與分析研究 (2008)
    58. Yang X.; Loos J., Macromolecules 2007, 40, 1353-1362.
    59. Cristina C.; Federico K.; Fabian P.; Thomas U.; Anna K.; Tobias B., The Journal of chemical physics 2015, 142, 212429.
    60. Gettinger C. L.; Heeger A. J.; Drake J. M.; Pine D. J., Molecular Crystals and Liquid Crystals 1994, 256(1), 507-512.
    61. Tuan V.-D, Nanotechnology in Biology and Medicine. Methods, Devices, and Applications, Boca Raton : CRC Press (2007), pp.257
    62. Inigo A. R.; et al., Journal of the Chinese Chemical Society 57.3B 2010: 459-468.
    63. Hsul C. C.; Prausnitz J. M., Macromolecules, Vol. 7, No. 3, MayJune 1974.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE