研究生: |
蔣嘉哲 Chiang, Chia Che |
---|---|
論文名稱: |
利用有機酸添加物以電沉積法誘發碳覆蓋層對赤鐵礦電極結構與光催化特性研究 The Structural and Photocatalytic Characteristics of Induced Elemental Carbon Overlayers Hematite Electrodes Prepared by Electrodeposition with Organic Acid Additives |
指導教授: |
王竹方
Wang Chu Fang |
口試委員: |
談駿嵩
Tan, Chung Sung 蔣本基 Chiang, Pen Chi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 電沉積 、赤鐵礦 、水分解 、碳包覆 、有機酸 |
外文關鍵詞: | electrodeposition, hematite, water splitting, carbon-coated, organic acid |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發現利用電鍍法來製備赤鐵礦電極時,在電鍍液中添加不同親和力有機酸都會誘發碳覆蓋層的產生,且所製備的光電極其光電流密度和製備電鍍液的pH值具有顯著相關性,可以透過有機酸與氧化鐵之間吸附吸附平衡關係解釋,此外,厚度2~5奈米的碳包覆赤鐵礦電極可提升10倍的光電流,達到2 mA/cm2 (0.4 V vs SCE) 的表現。雖然厚度2~5奈米碳包覆層可以鈍化赤鐵礦表面態階(surface state),但經過90分鐘的照光後,赤鐵礦與碳包覆層之間的界面會形成一個電容,導致光電流下降。根據本研究結果,一個有效的碳包覆層的特性包含: (i) 可透過鈍化表面態階讓降低光電流起始電壓, (ii) 提升赤鐵礦電極載子濃度,(iii) 增強電極的穩定性,以維持長時間的陽光照射。
In this study, we found that it could be an universal case that an elemental carbon overlayer would be induced when hematite electrodes are prepared using electrodeposition with additional organic acid additives in the electrolyte. Their photocurrent densities are strongly dependent on the electrolyte pH where they were prepared as the thickness of elemental carbon ovrelayers is regulated by the amount of adsorbed organic acids on electroreduced iron oxyhydroxides during electrodeposition. An optimal carbon overlayer approximately 2~5 nm would lead the PEC performances up to around 2 mA/cm2 (0.4 V vs SCE), which is almost 10 times higher than those without carbon overlayers. While carbon overlayers would effectively passivate surface states, their degradation in the end of 90 minutes of illumination would lead a capacitor feature occurring at hematite/carbon overlayer interface and therefore compromises the PEC performance. Based on our results, characteristic of an effective carbon overlayer might include: (i) passivating surface states to reduce onset photocurrent potential, (ii) doping additional charges to enhance photocurrent plateau, and (iii) enhanced stability to sustain a long period of sunlight illumination.
Chapter 6 Reference
1. Ilkay Cesar , Andreas Kay , José A. Gonzalez Martinez , and Michael Grätzel, Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. Journal of the American Chemical Society, 2006. 128(14): p. 4582-4583.
2. Kevin Sivula, Florian Le Formal, and Michael Grätzel, Solar water splitting: progress using hematite (α‐Fe2O3) photoelectrodes. ChemSusChem, 2011. 4(4): p. 432-449.
3. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, and J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes. International journal of hydrogen energy, 2006. 31(14): p. 1999-2017.
4. Hwichan Jun , Badro Im , Jae Young Kim , Yong-O Im , Ji-Wook Jang , Eun Sun Kim , Jae Yul Kim , Hyeon Joon Kang , Suk Joon Hong and Jae Sung Lee , Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. Energy & Environmental Science, 2012. 5(4): p. 6375-6382.
5. Peter, L.M., K.U. Wijayantha, and A.A. Tahir, Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday discussions, 2012. 155: p. 309-322.
6. Martin P. Dare-Edwards, John B. Goodenough, Andrew Hamnett and Peter R. Trevellick, Electrochemistry and photoelectrochemistry of iron (III) oxide. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1983. 79(9): p. 2027-2041.
7. T Bak, J Nowotny, M Rekas, and C.C Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International journal of hydrogen energy, 2002. 27(10): p. 991-1022.
8. Fujishima, Akira, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238: p. 37-38.
9. Li, Y. and J.Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser & Photonics Reviews, 2010. 4(4): p. 517-528.
10. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
11. Lewis, N.S., Light work with water. Nature, 2001. 414(6864): p. 589-590.
12. Allen J. Bard, and Marye Anne Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Accounts of Chemical Research, 1995. 28(3): p. 141-145.
13. Kevin Sivula, Radek Zboril, Florian Le Formal, Rosa Robert, Anke Weidenkaff, Jiri Tucek, Jiri Frydrych, and Michael Grätzel, Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. Journal of the American Chemical Society, 2010. 132(21): p. 7436-7444.
14. Hardee, K.L. and A.J. Bard, Semiconductor electrodes V. The application of chemically vapor deposited iron oxide films to photosensitized electrolysis. Journal of the Electrochemical Society, 1976. 123(7): p. 1024-1026.
15. Kennedy, J.H. and K.W. Frese, Photooxidation of water at α‐Fe2O3 electrodes. Journal of the Electrochemical Society, 1978. 125(5): p. 709-714.
16. Kay, A., I. Cesar, and M. Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films. Journal of the American Chemical Society, 2006. 128(49): p. 15714-15721.
17. Hahn, N.T. and C.B. Mullins, Photoelectrochemical performance of nanostructured Ti-and Sn-doped α-Fe2O3 photoanodes. Chemistry of Materials, 2010. 22(23): p. 6474-6482.
18. Ya-Ping Hsu, Sheng-Wei Lee, Jeng-Kuei Chang, Chung-Jen Tseng, Kan-Rong Lee,and Chih-Hao Wang, Effects of platinum doping on the photoelectrochemical properties of Fe2O3 electrodes. Int. J. Electrochem. Sci, 2013. 8: p. 11615-11623.
19. Alan Kleiman-Shwarsctein, Muhammad N. Huda, Aron Walsh, Yanfa Yan, Galen D. Stucky, Yong-Sheng Hu§, Mowafak M. Al-Jassim and Eric W. McFarland, Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: experiment and theory. Chemistry of Materials, 2009. 22(2): p. 510-517.
20. Vibha R. Satsangi, Saroj Kumari, Aadesh P. Singh, Rohit Shrivastav, and Sahab Dass, Nanostructured hematite for photoelectrochemical generation of hydrogen. International Journal of Hydrogen Energy, 2008. 33(1): p. 312-318.
21. Ingler Jr, W.B. and S.U. Khan, Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination. Thin Solid Films, 2004. 461(2): p. 301-308.
22. Guotian Yan, Min Zhang, Jian Hou,and Jianjun Yang, Photoelectrochemical and photocatalytic properties of N+ S co-doped TiO2 nanotube array films under visible light irradiation. Materials Chemistry and Physics, 2011. 129(1): p. 553-557.
23. Gongming Wang, Yichuan Ling, Damon A. Wheeler, Kyle E. N. George, Kimberly Horsley, Clemens Heske, Jin Z. Zhang, and Yat Li, Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano letters, 2011. 11(8): p. 3503-3509.
24. Ilkay Cesar, Kevin Sivula, Andreas Kay, Radek Zboril, and Michael Grätzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. The Journal of Physical Chemistry C, 2008. 113(2): p. 772-782.
25. Yichuan Ling, Gongming Wang, Damon A. Wheeler, Jin Z. Zhang, and Yat Li, Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano letters, 2011. 11(5): p. 2119-2125.
26. Hyun Gil Cha, Jieun Song, Hyun Sung Kim, Woonsup Shin, Kyung Byung Yoon, and Young Soo Kang, Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chemical Communications, 2011. 47(8): p. 2441-2443.
27. Le Formal, F., M. Grätzel, and K. Sivula, Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting. Advanced Functional Materials, 2010. 20(7): p. 1099-1107.
28. Duret, A. and M. Grätzel, Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. The Journal of Physical Chemistry B, 2005. 109(36): p. 17184-17191.
29. Goncalves, R.H., B.H. Lima, and E.R. Leite, Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. Journal of the American Chemical Society, 2011. 133(15): p. 6012-6019.
30. Diane K. Zhong, Jianwei Sun, Hiroki Inumaru, and Daniel R. Gamelin, Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. Journal of the American Chemical Society, 2009. 131(17): p. 6086-6087.
31. Yong-Sheng Hu, Alan Kleiman-Shwarsctein, Arnold J. Forman, Daniel Hazen, Jung-Nam Park, and Eric W. McFarland, Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chemistry of Materials, 2008. 20(12): p. 3803-3805.
32. Haripriya E Prakasam, Oomman K Varghese, Maggie Paulose, Gopal K Mor, and Craig A Grimes, Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology, 2006. 17(17): p. 4285.
33. Alan Kleiman-Shwarsctein, Yong-Sheng Hu, Arnold J. Forman, Galen D. Stucky, and Eric W. McFarland, Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. The Journal of Physical Chemistry C, 2008. 112(40): p. 15900-15907.
34. Spray, R.L. and K.-S. Choi, Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition. Chemistry of Materials, 2009. 21(15): p. 3701-3709.
35. Goodenough, J.B., Energy bands in TX2 compounds with pyrite, marcasite, and arsenopyrite structures. Journal of Solid State Chemistry, 1972. 5(1): p. 144-152.
36. Watanabe, A. and H. Kozuka, Photoanodic properties of sol-gel-derived Fe2O3 thin films containing dispersed gold and silver particles. The Journal of Physical Chemistry B, 2003. 107(46): p. 12713-12720.
37. Chi-dong Park, Jeremy Walker, Rina Tannenbaum, A. E. Stiegman, J. Frydrych, and L. Machala, Sol− Gel-Derived Iron Oxide Thin Films on Silicon: Surface Properties and Interfacial Chemistry. ACS applied materials & interfaces, 2009. 1(9): p. 1843-1846.
38. Kiwamu Sue, Toshiyuki Sato, Shin-ichiro Kawasaki, Yoshihiro Takebayashi, Satoshi Yoda, Takeshi Furuya, and Toshihiko Hiaki, Continuous hydrothermal synthesis of Fe2O3 nanoparticles using a central collision-type micromixer for rapid and homogeneous nucleation at 673 K and 30 MPa. Industrial & Engineering Chemistry Research, 2010. 49(18): p. 8841-8846.
39. Chun-Jiang Jia, Ling-Dong Sun, Zheng-Guang Yan, Li-Ping You, Feng Luo, Xiao-Dong Han, Yu-Cheng Pang, Ze Zhang, Chun-Hua Yan, Single‐Crystalline Iron Oxide Nanotubes. Angewandte Chemie, 2005. 117(28): p. 4402-4407.
40. Aronniemi, M., J. Saino, and J. Lahtinen, Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition. Thin Solid Films, 2008. 516(18): p. 6110-6115.
41. W. Widiyastuti, Ratna Balgis, Ferry Iskandar, and Kikuo Okuyama, Nanoparticle formation in spray pyrolysis under low-pressure conditions. Chemical Engineering Science, 2010. 65(5): p. 1846-1854.
42. Zhonghai Zhang, Md. Faruk Hossain, Takayuki Miyazaki, and Takakazu Takahashi, Gas phase photocatalytic activity of ultrathin pt layer coated on α-Fe2O3 films under visible light illumination. Environmental science & technology, 2010. 44(12): p. 4741-4746.
43. Eric L. Miller, Daniela Paluselli, Bjorn Marsen, and Richard E. Rocheleau, Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films, 2004. 466(1): p. 307-313.
44. Ying Liu, Yu-Xiang Yu, and Wei-De Zhang, Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition. Electrochimica Acta, 2012. 59: p. 121-127.
45. Florian Le Formal , Nicolas Tétreault , Maurin Cornuz , Thomas Moehl , Michael Grätzel, and Kevin Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chemical Science, 2011. 2(4): p. 737-743.
46. Mahmoud G. Ahmed, Imme E. Kretschmer, Tarek A. Kandiel, Amira Y. Ahmed, Farouk A. Rashwan, and Detlef W. Bahnemann, A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. ACS applied materials & interfaces, 2015. 7(43): p. 24053-24062.
47. Jiujun Deng , Xiaoxin Lv , Jing Gao , Aiwu Pu , Ming Li , Xuhui Sun, and Jun Zhong , Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy & Environmental Science, 2013. 6(6): p. 1965-1970.
48. Splitting, S.W., Progress Using Hematite (α-Fe2O3) Photoelectrodes Sivula, Kevin; Le Formal, Florian; Graetzel, Michael. ChemSusChem, 2011. 4(4): p. 432-449.
49. Tânia Lopes, Luísa Andrade, Florian Le Formal, Michael Gratzel, Kevin Sivula, and Adélio Mendes, Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy. Physical Chemistry Chemical Physics, 2014. 16(31): p. 16515-16523.
50. Gerischer, H., Semiconductor electrochemistry. Physical chemistry: an advanced treatise, 1970. 9: p. 463-542.
51. Aruchamy, A., G. Aravamudan, and G.S. Rao, Semiconductor based photoelectrochemical cells for solar energy conversion—an overview. Bulletin of Materials Science, 1982. 4(5): p. 483-526.
52. Hankin, A., J. Alexander, and G. Kelsall, Constraints to the flat band potential of hematite photo-electrodes. Physical Chemistry Chemical Physics, 2014. 16(30): p. 16176-16186.
53. Chandra, S., Photoelectrochemical solar cells. 1985: Gordon a. Breach New York.
54. Morrison, S.R., Electrochemistry at semiconductor and oxidized metal electrodes. 1980.
55. Francisco Fabregat-Santiagoa, Germà Garcia-Belmontea, Juan Bisquerta, Peter Bogdanoffb, and Arie Zabanc, Mott-Schottky analysis of nanoporous semiconductor electrodes in dielectric state deposited on SnO2 (F) conducting substrates. Journal of The Electrochemical Society, 2003. 150(6): p. E293-E298.
56. Harrington, S.P. and T.M. Devine, Analysis of electrodes displaying frequency dispersion in Mott-Schottky tests. Journal of The Electrochemical Society, 2008. 155(8): p. C381-C386.
57. Albery, W.J., G.J. O'Shea, and A.L. Smith, Interpretation and use of Mott–Schottky plots at the semiconductor/electrolyte interface. Journal of the Chemical Society, Faraday Transactions, 1996. 92(20): p. 4083-4085.
58. Reddy, P. Muralidhar; Chang, Kai-Chih; Liu, Zhen-Jun; Chen, Cheng-Tung; Ho, Yen-Peng, Functionalized Magnetic Iron Oxide (Fe3O4) Nanoparticles for Capturing Gram-Positive and Gram-Negative Bacteria. Journal of biomedical nanotechnology, 2014. 10(8): p. 1429-1439.
59. Schecher, W.D. and D.C. McAvoy, MINEQL+: A chemical equilibrium modeling system; Version 4.5 for Windows Workbook. 2001: Environmental Research Software.
60. TsingHai Wang, Yi-Nuo Chen, Chia-Che Chiang, Yi-Kong Hsieh, Po-Chieh Li, and Chu-Fang Wang, Carbon‐Coated Hematite Electrodes with Enhanced Photoelectrochemical Performance Obtained through an Electrodeposition Method with a Citric Acid Additive. ChemElectroChem, 2016.
61. Xili Tong, Peng Yang, Yunwei Wang, Yong Qin, and Xiangyun Guo, Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition. Nanoscale, 2014. 6(12): p. 6692-6700.
62. Xili Tong, Peng Yang, Yunwei Wang, Yong Qin, and Xiangyun Guo, TiO2@ Carbon Photocatalysts: the Effect of Carbon Thickness on Catalysis. ACS Applied Materials & Interfaces, 2015.
63. Wagner, C.D., NIST X-ray photoelectron spectroscopy database. 2000: National Institute of Standards and Technology.
64. Zandi, O. and T.W. Hamann, Enhanced water splitting efficiency through selective surface state removal. The journal of physical chemistry letters, 2014. 5(9): p. 1522-1526.
65. Benjamin Klahr, Sixto Gimenez, Francisco Fabregat-Santiago, Juan Bisquert, and Thomas W. Hamann, Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy & Environmental Science, 2012. 5(6): p. 7626-7636.
66. Benjamin Klahr, Sixto Gimenez, Francisco Fabregat-Santiago, Juan Bisquert, and Thomas W. Hamann, On the interfacial electronic structure origin of efficiency enhancement in hematite photoanodes. The Journal of Physical Chemistry C, 2012. 116(43): p. 22780-22785.
67. Qing Yu, Xianguang Meng, Tao Wang, Peng Li,and Jinhua Ye, Hematite Films Decorated with Nanostructured Ferric Oxyhydroxide as Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. Advanced Functional Materials, 2015. 25(18): p. 2686-2692.
68. Ludmilla Steier, Isaac Herraiz-Cardona, Sixto Gimenez, Francisco Fabregat-Santiago, Juan Bisquert, S. David Tilley, and Michael Grätzel, Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Advanced Functional Materials, 2014. 24(48): p. 7681-7688.
69. Chun Du, Xiaogang Yang, Matthew T. Mayer, Henry Hoyt, Jin Xie, Gregory McMahon, Gregory Bischoping, Dunwei Wang, Hematite‐based water splitting with low turn‐on voltages. Angewandte Chemie International Edition, 2013. 52(48): p. 12692-12695.
70. Matthew T. Mayer, Yongjing Lin, Guangbi Yuan, and Dunwei Wang, Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Accounts of chemical research, 2013. 46(7): p. 1558-1566.
71. Takashi Hisatomi, Florian Le Formal, Maurin Cornuz, Jérémie Brillet, Nicolas Tétreault, Kevin Sivula, and Michael Grätzel, Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy & Environmental Science, 2011. 4(7): p. 2512-2515.
72. Hui Xia, Caiyun Hong, Bo Li, Bin Zhao, Zixia Lin, Mingbo Zheng, Serguei V. Savilov, Serguei M. Aldoshin, Facile Synthesis of Hematite Quantum‐Dot/Functionalized Graphene‐Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors. Advanced Functional Materials, 2015. 25(4): p. 627-635.