簡易檢索 / 詳目顯示

研究生: 陳歆穎
Chen, Hsin-Ying
論文名稱: 探討數學創造力遊戲融入教學以提升學生抽象概念能力之研究
A Study of Explore the Integration of Mathematical Creativity Games in Teaching to Enhance Students' Abstract Conceptual Ability
指導教授: 陳正忠
Chen, Jeng-Chung
口試委員: 林勇吉
Lin, Yung-Chi
陳致澄
Chen, Jhih-Cheng
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 數學創造力遊戲評量架構數學抽象
外文關鍵詞: mathematical creativity, game, assessment framework, mathematical abstraction
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討數學創造力遊戲融入教學以提升學生抽象概念能力之研究。適當的遊戲設計能符合人性需求並引起數學學習動力,因此本研究透過遊戲作為展現學生數學創造力的教學工具,進而探索遊戲中學生的數學創造力對數學抽象概念的影響。本研究採觀察研究法,參考Leikin(2009)編製的創造力評量架構及Torrance (1974)創造力中的精緻性,針對遊戲領域的數學創造力進行評量架構修改,建立其數學創造力元素內涵意義,評量架構其中之一為衡量遊戲的數學創造力內涵,用以分析「認識分數」遊戲的品質,另一為分析學生在遊戲下的數學創造力表現。研究以新竹市某國小27位四年級學生作為研究對象,並透過研究者觀察、錄影及錄音檔針對學生在遊戲中數學創造力表現進行質性分析,並透過遊戲前及遊戲後抽象概念測驗卷進行t檢定分析。本研究的結果概述如下:
    一、可從數學創造力評量架構中,透過創造力元素的內涵分析,可評量該遊戲的品質。
    二、在此數學創造力元素內涵的分析下,能有效分析出學生的流暢性、變通性、原創性和精緻性。
    三、在「認識分數」遊戲後的學生數學抽象概念能力有顯著影響。


    This study investigates the integration of a mathematics creativity game into teaching to enhance students' abstract conceptual abilities. Appropriate game design can meet human needs and stimulate motivation for mathematical learning. Therefore, this research utilizes a game as a teaching tool to showcase students' mathematical creativity and explore the impact of their mathematical creativity on abstract mathematical concepts. The study adopts an observational research method, referring to the creativity assessment framework developed by Leikin (2009) and the elaboration of creativity by Torrance (1974). It modifies the assessment framework to suit mathematical creativity in the gaming domain and establishes the conceptual meanings of its mathematical creativity elements. One component of the assessment framework measures the mathematical creativity embedded in the game, analyzing the quality of the "Understanding Fractions" game. The other component analyzes students' mathematical creativity performance during the game. The research focuses on 27 fourth-grade students from a primary school in Hsinchu City. Qualitative analysis is conducted based on researcher observations, video recordings, and audio files of students' mathematical creativity performance during the game. Additionally, a t-test analysis is performed using pre- and post-game abstract conceptual tests. The summary of the research findings is as follows:
    1. The quality of the game can be assessed using the mathematical creativity assessment framework through an analysis of the conceptual meanings of creativity elements.
    2. Through the analysis of the conceptual meanings of mathematical creativity elements, students' fluency, flexibility, originality, and elaboration can be effectively analyzed.
    3. The "Understanding Fractions" game has a significant impact on students' abstract conceptual abilities in mathematics.

    目錄 1 圖目錄 3 表目錄 4 第一章 緒論 6 第一節 研究背景與動機 6 第二節 研究目的與待答問題 9 第三節 名詞解釋 9 第四節 研究限制 11 第二章 文獻探討 11 第一節 廣義的創造力 12 第二節 數學創造力的內涵 16 第三節 數學遊戲與教學 23 第四節 分數的教與學 27 第五節 數學抽象概念 30 第三章 研究方法 33 第一節 研究架構 33 第二節 研究設計 34 第三節 研究流程 35 第四節 研究對象 38 第五節 研究工具 39 第六節 資料蒐集與分析 53 第四章 研究結果 57 第一節 「認識分數」遊戲的數學創造力內涵 57 第二節 「認識分數」遊戲中學生數學創造力之表現 66 第三節 「認識分數」遊戲後學生數學抽象概念之分析 97 第五章 結論與建議 105 第一節 結論 105 第二節 建議 108 參考文獻 110 中文文獻 110 英文文獻 112 附錄 116 附錄一 「認識分數」遊戲前導測驗 116 附錄二 「認識分數」遊戲關卡一卡牌 118 附錄三 「認識分數」遊戲關卡二卡牌 119 附錄四 「認識分數」遊戲關卡三學習單 122 附錄五 「認識分數」遊戲關卡三透明板 122 附錄六 遊戲前抽象概念測驗卷 124 附錄七 遊戲後抽象概念測驗卷 126 附錄八 遊戲前導影片觀察紀錄表 128 附錄九 「認識分數」遊戲關卡一觀察紀錄表 129 附錄十 「認識分數」遊戲關卡二觀察紀錄表 132 附錄十一 「認識分數」遊戲關卡三觀察紀錄表 133 附錄十二 遊戲之數學創造力內涵評分表 134 附錄十三 遊戲之學生數學創造力展現評分表 135

    中文文獻
    王曉璿、林朝清、周建宏、蔡松男、王怡萱(2009).不同電腦輔助學習策略輔助數學分數概念課程學習效益之研究,數位學習科技期刊,1(4),326-346
    王奎婷(2004),一位職前教師實施遊戲融入國小三年級分數教學之歷程與省思。國立屏東師範學院數理教育研究所,碩士論文。
    呂玉琴(1991).國小學生的分數概念:1/2 vs. 2/4,國民教育, 31(11,12), 10-15
    江蘇星火教育(2018). 什麼是數學抽象?數學抽象在高中數學中的運用。
    https://read01.com/4D2LzAG.html
    李乙明(2006)。陶倫斯創造思考測驗語文版。臺北市:心理。
    林幸台、王木榮(1994)。威廉斯創造力測驗。臺北市:心理。
    林碧珍(2020).學生在臆測任務課堂表現的數學創造力評量.科學教育學刊,28,429-455。
    林福來,黃敏晃,呂玉琴,譚寧君(1992)。教與學的整合研究(II):分數概念: 分數啟蒙的診斷教學(行政院國家科學委員會專題研究計畫成果報告編號: NSC-81-0111-S-003-021-A)。
    林福來、黃敏晃(1993).分數啟蒙課程的分析、批判與辯證。科學教育學刊,1(1),1-27。
    林俊吉、吳毓瑩、呂玉琴(2009).分數概念題庫之建立:跨學習階段的校準與測量。教育研究與發展期刊,5 (4),187-218。
    林業盈 (Yeh-Ying Lin). (2023). 運用文獻計量分析創造力教育研究的演進情形與發展趨勢. 教育研究與發展期刊, 19(1), 71-106。
    孟茹, 杜育書. (2022). 數學抽象素養的建構策略探究. 創新教育研究,
    10(4), 773-782。
    周淑惠(2013).遊戲 VS 課程:幼兒遊戲定位與實施.心理出版社。
    洪文東(2000).從問題解決的過程培養學生的科學創造力.屏師科學教育,11,52-62。
    侯慧淳、楊瑞智(2011)。探討國小學童分數起始概念。國教新知,58(3),2-12。
    馬秀蘭、吳德邦、張鈺雪、林思行、蔡武諺(20).以團康遊戲融入假分數化為帶分數的教學實驗.科學教育研究與發展季刊,65,75-98頁。
    教育部(2017)。十二年國民基本教育課程綱要。
    陳龍安(1995)。創造思考教學的理論與實際。台北:心理。
    陳李網 (2004)。國小數學創造力診斷與認知歷程工具研發。《教育心理學報》,1(1),1-17。
    陳東賢(2021)。發展悅趣化數學文化教案以培養數量與代數素養之探究。臺灣數學教育期刊,8(1),55-78。
    陳嘉皇 (2005)。數學遊戲及其在課堂上的應用。台灣數學教師電子期刊,(1), 22-29。
    張熙明、楊德清(2007).國小五年級學童分數表徵教學之研究.台灣數學教師電子期刊,10,2007。
    張春興(1989)。張氏心理學辭典。台北:東華書局。
    張華城、洪文東(2004)。國小學童數學創造力與科學創造力之相關性及差異性研究。科學教育研究與發展季刊,37,25-50。
    曹亮吉(1984).談數學.科學月刊。
    黃奕光(2003).Asian 創造力:為什麼西方人比東方人有創造力(譯者:王蕆真).台灣培生。(2000)
    黃毅英(1993)。遊戲與數學教學。數學傳播,17(2),1-19。
    黃瑞琴(1995).幼稚園的遊戲課程.心理出版社。
    楊坤原(2001).創造力的意義及其影響因素簡介。科學教育月刊,239期,3-12。
    葉玉珠(2005)。科技創造力測驗指導手冊。臺北市:心理。
    詹婉華、呂玉琴 (2004)。國小高年級學童分數概念量表之設計研究。科學教育學刊, 12(2),241-263。
    詹勳國、李震甌、莊蕙元、戴政吉、侯美玲(2004).數學的學習與教學:六歲到十八歲.心理出版社。
    董奇(1995):兒童創造力發展心理。台北市:五南圖書公司。
    蔣治邦(1994) .由表徵觀點探討新教材數與計算活動的設計.國民小學數學科新課程概說--低年級.臺北:臺灣省國民教師研習會。
    蔡淑苓(1988)。羅素對幼兒教育的主張。教師之友,29(3),30-34。
    劉宣谷(2015).數學創造力的文獻回顧與探究.臺灣數學教育期刊,2(1),23-40。
    饒見維(1996).國小數學遊戲教學法.五南。

    英文文獻
    Amabile, T. M. (1996). Creativity in Context. Boulder, CO: Westview
    Afari, E., Aldridge, J. M., Fraser, B.J., & Khine M.S. (2013). Students’ perceptions of the learning environment and attitudes in game- based mathematics classrooms. Learning Environ Res,16,31-150.
    Almeida, L. S., Prieto Prieto, L., Ferrando, M., Oliveira, E., & Ferrándiz, C. (2008). Torrance Test of Creative Thinking: The question of its construct validity. Thinking Skills and Creativity, 3(1), 53-58.Balka, D. S. (1974). Creative ability in mathematics. The Arithmetic Teacher, 21(7), 633-636.
    Behr, M. J., & Post, T. R. (1988). Teaching rational number and decimal concepts. In T. R. Post (Eds.), Teaching mathematics in grades K-8. Boston, MA: Allyn and Bacon.
    Bragg, L. A. (2012). The effect of mathematical games on on-task behaviours in the primary classroom. Mathematics Education Research Group of Australasia, Inc,24,385-401. http://doi.org/10.1007/s13394-012- 0045-4
    Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37-47.
    Chamberlin, S. A., & Moon, S. (2005). Model-eliciting activities: An introduction to gifted education. Journal of Secondary Gifted Education, 17(1), 37-47.
    Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of creativity. In R. J. Sternberg (Ed.), The nature of creativity (pp. 325-339). New York: Cambridge University Press.
    Cramer K. A., Post T. R. & delMas, R. C. (2002). Initial fraction learning by fourth and fifth-grade students: a comparison of the effects of using commercial curricula with the effects of using the Rational Number Project curriculum, Journal for Research in Mathematics Education, 33(2), 111-144.
    Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42–53). Dordrecht: Kluwer.
    Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.
    Ferrando, M., Ferr ́andiz, C., Bermejo, M. R., S ́anchez, C., Parra, J., & Prieto, M. D. (2007). Estructura interna y baremaci ́on del Test de Pensamiento Creativo deTorrance. Psicothema, 19(3), 489–496
    Guberman, R., & Leikin, R. (2013). Interesting and difficult mathematical problems: changing teachers’views by employing multiple-solution tasks. Journal of Mathematics Teacher Education, 16(1), 33- 56.
    Guilford, J. P. (1967).The nature of human intelligence. New York: McGraw- Hill.
    Gruber, H. E., &Davis., S.N.(1988).Inching our way up Mount Olympus: The evolving systems approach to creative thinking. In R. J. Sternberg(Eds.), The nature of creativity(pp.243-270). NY: Cambridge University Press.
    Gardner, H.(1993). Creating minds: An anatomy of creativity seen through the lives of Freud, Einstein, Picasso, Stravinsky, Eliot, Graham, and Candhi. NY: Basic.
    Grinstein, L., & Lipsey, S. I. (2020). Abstraction in Mathematics Education. In Encyclopedia of Mathematics Education (pp. 13-16). New York, NY: Springer.
    Holmes, E. E. (1995). New directions in elementary school mathematics: Interactive teaching and learning.Englewood Cliffs, NJ: Prentice-Hall.
    Haylock, D. W (1987b). A framework for assessing mathematical creativity in schoolchildren. Educational Studies in Mathematics, 18, 59-74.
    Hollands, R. (1972). Educational technology: Aims and objectives in teaching mathematics. Mathematics in School, 1(6), 22-23.
    Haylock, D. W. (1987). A framework for assessing mathematical creativity in school chilren. Educational studies in mathematics, 18(1), 59-74.
    Hocevar, D., & Bachelor, P. (1989). A taxonomy and critique of measurements used in the study of creativity. In J. A. Glover, R. R. Ronning & C. R. Reynolds (Eds.), Handbook of creativity. New York: Plenum Press.
    Hollis,L.Y.,&Felder,B.D.(1982).Recreational mathematics for young children.School Science and Mathematics,82(1),71-75.
    Idris, N., & Nor, N. M. (2010). Mathematical creativity: usage of technology. Procedia-Social and Behavioral Sciences, 2(2), 1963-1967.
    Jerome S. Bruner. (1960).The process of education. Cambridge: Harvard University Press,
    Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The Four C Model of creativ-ity. Review of General Psychology, 13(1), 1-12.
    Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference?. Zdm, 45(2), 183-197.
    Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J.-H. Woo, H.-C. Lew,K.-S. Park, & D.-Y. Seo (Eds.), Proceedings of the 31st International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 161-168). Seoul, South Korea: Korean Society of Educational Studies in Mathematics.
    Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin,A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students(pp. 129-145). Rotterdam, The Netherlands: Sense Publishers.doi:10.1163/9789087909352_010
    Levav-Waynberg & Leikin, 2012Guilford, J. P. (1950). Creativity research: Past, present and future. American psychologist, 5(1), 444- 454.
    Maslow, A. (1959). New knowledgism human values. N. Y. : Van Nostrand Reinhold.
    Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: Freeman.
    Mazumdar, L. (2017). Mathematics Teaching - Balancing Abstract Verses Concrete. Interwoven: An Interdisciplinary Journal of Navrachana University, 1(2),
    mitchelmore, m. c. (1994). abstraction, generalisation and conceptual change in mathematics. hiroshima journal of mathematics education, 2, 45–56.
    Noah, O. O. (2019). Effect of Computer Game-Based Instructional Strategy on Students’ Learning Outcome in Mathematics. Journal of Education, Society and Behavioural Science,29(4),1-15.
    Runco, M. A., & Albert, R. S. (1985). The reliability and validity of ideational originality in the divergent thinking of academically gifted and nongifted children. Educational and Psychological Measurement,45(3), 483-501.
    Romey, W. D. (1970). What is your creativity quotient? School Science and Mathematics, 70(1), 3-8.
    Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677-688. doi:10.1037/0003-066X.51.7.677
    Shin, N., & Sutherland, L.M., & Norris, C.A., & Soloway, E. (2012). Effects of game technology on elementary student learning in mathematics. British Journal of Educational Technology, 43 (4)540-560. http://doi.org/10.1111/j.1467-8535.2011.01197.x
    Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? The Journal of Secondary Gifted Education, 17 (1), 20–36.
    Torrance, E. P. (1974). Torrance tests of creative thinking. Princeton,NJ: Personal Press/Ginn and Company.
    Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing Creativity: A Guide for Educators. National Research Center on the Gifted and Talented.
    Turgut, S. & Temur, Ö. D., (2017). The effect of game-assisted mathematics education on academic achievement in Turkey: a meta-analysis study. International Electronic Journal of Elementary Education,10,195-206. http://doi.org/10.26822/iejee.2017236115
    Vygotsky, L. S. (1984). Imagination and creativity in adolescent. In R. W. Rieber (Ed.), The collected works of L. S. Vygotsky: Vol. 5, child psychology. (pp. 151-166). New York, NY: Springer.
    Vandercruysse, S., ter Vrugte, J., de Jong, T., Wouters, P., van Oostendorp, H., Verschaffel, L., et al. (2016). The effectiveness of a math game: The impact of integrating conceptual clarification as support. Computers in Human Behavior,64,21-33. http://doi.org/ 10.1016/j.chb.2016.06.004
    Wallas, G. (1926). The art of thought. New York: Harcourt Brace Jovanovich.

    QR CODE