簡易檢索 / 詳目顯示

研究生: 蕭一川
Hsioa, I-Chuan
論文名稱: 以La0.8Sr0.2MnO3-δ為固態氧化物燃料電池陰極材料行氮氧化物還原之研究
La0.8Sr0.2MnO3-δ as Solid Oxide Fuel Cell Cathode Material on Reduction of Nitric Oxide
指導教授: 黃大仁
Huang, Ta-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 固態氧化物燃料電池陰極材料LSM一氧化氮V2O5
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以鈣鈦礦結構導氧離子材料La0.8Sr0.2MnO3-δ(LSM),搭配具有導氧離子性質之材料氧化釓參雜氧化鈰(Ce0.9Gd0.1O2-x, GDC)作為固態氧化物燃料電池 之複合式陰極材料,以氧氣(O2)、一氧化氮(NO)、水氣(H2O)與二氧化碳(CO2)等混成氣體模擬工業廢氣或汽機車廢氣組成之混合氣作為陰極進料,對於污染物一氧化氮(NO)進行還原減量之工作,從中分析電池電性以及出口氣體組成。此LSM-GDC為陰極材料電池以20% 氧氣為陰極氣體為進料於800℃下,電池之最大能量密度(maximum power density)可達63.8 mW/cm2。
    於陰極材料LSM-GDC中含浸活性觸媒V2O5對於陰極進行改質,可大幅度提昇電池之最大能量密度至119.5 mW/cm2,以一氧化氮為陰極氣體之催化活性亦大幅度提昇。對於模擬工業廢氣或汽機車廢氣組成之混合氣中,分別分析其中水氣、氧氣濃度、二氧化碳濃度以及操作電壓對於一氧化氮轉化率之影響。以一氧化氮混合氦氣作為陰極氣體進料,對於出口氣體進行分析,藉此探討一氧化氮於固態氧化物燃料電池陰極側之反應機制。


    第一章 緒論……………………………………………………………1 第二章 文獻回顧………………………………………………………3 2-1 燃料電池簡介………………………………………………3 2-2 固態氧化物燃料電池………………………………………5 2-3固態氧化物燃料電池運作之原理……………………………7 2-4 固態氧化物燃料電池之電解質材料………………………9 2-4-1 立方螢石型結構……………………………………10 2-4-2 鈣鈦礦結構…………………………………………11 2-5 固態氧化物燃料電池陽極材料……………………………13 2-6 固態氧化物燃料電池陰極材料……………………………14 2-6-1 陰極鈣鈦礦材料La0.8Sr0.2MnO3−δ(LSM)……………17 2-7 氮氧化物(NOx)之減量處理技術 …………………………18 2-7-1 觸媒催化氮氧化物之方法…………………………19 2-7-2 混合導體分解氮氧化物 ……………………………25 2-7-3 以固態氧化物燃料電池發電方式處理NOx…………32 第三章 研究規劃………………………………………………………34 3-1 研究動機……………………………………………………34 3-2 研究規劃……………………………………………………35 第四章 實驗方法與步驟………………………………………………37 4-1 實驗藥品 ……………………………………………………37 4-2 製備方法 ……………………………………………………39 4-2-1 La0.8Sr0.2MnO3-δ (LSM) ……………………………39 4-2-2 Ce0.9Gd0.1O2-x , Gadolinia doped Ceria, GDC……40 4-2-3 陽極支撐型電池之材料……………………………41 4-2-4 復合陰極材料之製備………………………………41 4-2-5 旋轉塗佈機陰極漿料之製備………………………42 4-3 實驗儀器……………………………………………………43 4-4 實驗方法……………………………………………………44 4-4-1 電池單元製備………………………………………44 4-4-2 電池性能測試………………………………………46 第五章 實驗結果與討論………………………………………………49 5-1 粉體製備之分析……………………………………………50 5-2 掃描式電子顯微鏡 (SEM, Scanning Electron Microscopy) ………………52 5-3 電池效能……………………………………………………53 5-3-1 LSM-GDC為陰極材料通入模擬空氣…………………53 5-4固態氧化物燃料電池以發電方式處理氮氧化物……………56 5-4-1 以固態氧化物燃料電池處理模擬廢氣……………57 5-5 陰極材料LSM-GDC含浸活性金屬V2O5之影響……………63 5-5-1 陰極通入NO電池效能……………………………68 5-5-2 含浸V2O5之LSM-GDC與未含浸之LSM-GDC電池效能比較…………………………………………………72 5-5-3 模擬廢氣組成………………………………………74 5-6 廢氣組成之成份對於NO轉化率及電池效能之影響 ……79 5-6-1 水氣…………………………………………………79 5-6-2 氧氣…………………………………………………84 5-6-3 二氧化碳……………………………………………86 5-6-4 電壓…………………………………………………87 5-6-5 廢氣對於電池效能之影響…………………………89 5-7 NO反應機制…………………………………………………92 第六章 結論……………………………………………………………96 第七章 未來工作………………………………………………………97 第八章 參考文獻………………………………………………………98

    1.左峻德, “燃料電池之特性與運用 兼論台灣燃料電池產業之發展”, 行政院國家科學委員會科學技術資料中心, 民國九十年。
    2.周建良, “以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究”, 清華大學化工所 博士論文,民國九十八年。
    3.衣寶廉, “燃料電池”, 五南圖書出版股份有限公司, 2003。
    4.賴彥廷, “以(Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ為SOFC陰極材料之研究”, 清華大學化工所 碩士論文,民國九十七年。
    5.D. J. L. Brett, A. Atkinson, “Intermediate temperature solid oxide fuel cells”, Chemical Society Reviews 37 (2008) 1568–1578
    6.A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E. Ivers-Tiffee, D. Stover, W. Mader, “Time-dependent performance of mixed-conducting SOFC cathodes”, Solid State Ionics 177 (2006) 1965–1968
    7.A. Weber, E. Ivers-Tiffee, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources 127 (2004) 273–283
    8.R. M. Ormerod, “Solid oxide fuel cells”, Chem. Soc. Rev 32 (2003) 17–28
    9.S. M. Haile, “Fuel cell materials and components”, Acta Materialia 51 (2003) 5981–6000
    10.余河潔,“以鍶摻雜銅酸鑭做為中溫固態氧化物燃料電池陰極材料之研究”, 國立成功大學材料科學及工程學系博士論文, 民國94年
    11.D. Mori, H. Oka, Y. Suzuki,” Synthesis, structure, and electrochemical properties of epitaxial perovskite La0.8Sr0.2CoO3 film on YSZ substrate”, Solid State Ionics 177 (2006) 535–540
    12.H. Kusaba, Y. Shibata, K. Sasaki, Y. Teraoka, “Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide”, Solid State Ionics 177 (2006) 2249–2253
    13.K. Kammer, “Studies of Fe–Co based perovskite cathodes with different A-site cations”, Solid State Ionics 177 (2006) 1047–1051
    14.A. Demin, P. Tsiakaras, E. Gorbova , S. Hramova, “A SOFC based on a co-ionic electrolyte”, Journal of Power Sources 131 (2004) 231–236
    15.Y.J. Leng, S.H. Chan, S.P. Jiang, K.A. Khor, “Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction”, Solid State Ionics 170 (2004) 9–15
    16.Hammou, J. Guindet, “Solid oxide fuel cell”, CRC Handbook of Solid State Electrochemistry, (1997)
    17.J. B. Goodenough, “Ceramic solid electrolytes”, Solid State Ionics 94 (1997) 17-25
    18.J. B. Goodenough, “Oxide-ion conductors by design”, Nature 404 (2000) 821-823
    19.Y. Liu, S. Hashimoto, H. Nishino, K. Takei, M. Mori, “Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3−δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs”, Journal of Power Sources 164 (2007) 56–64
    20.W. Z.Zhu, S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering, A362 (2003) 228-239
    21.S. P. Jiang,S. H. Chan, “A review of anode materials development in solid oxide fuel cells”, Journal of Materials Science, 39 (2004) 4405-4439
    22.A. Ringuede, J. A. Labrincha, J. R. Frade, “A combustion synthesis method to obtain alternative cermet materials for SOFC anodes”, Solid State Ionics, 141-142 (2001) 549-557
    23.F. Chen, M. Liu, “Study of transition metal oxide doped LaGaO3 as electrode materials for LSGM-based solid oxide fuel cells”, Journal of Solid State Electrochem, 3 (1998) 7-14
    24.Q. Fu, X. Xu, D. Peng, X. Liu, G. Meng, “Preparation and electrochemical characterization of Sr- and Mn-doped LaGaO3 as anode materials for LSGM-based SOFCs”, Journal of Materials Science, 38 (2003) 2901-2906
    25.N. Maffei, G. de Silveira, “Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC elements”, Solid State Ionics, 159 (2003) 209- 216
    26.D. Beckel, U.P. Muecke, T. Gyger, G. Florey, A. Infortuna, L.J. Gauckler, “Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis”, Solid State Ionics 178 (2007) 407–415
    27.Z. Chen, R. Ran, “Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta 52 (2007) 7343–7351
    28.K. Kammer, E.M. Skou, “LSFM perovskites as cathodes for the electrochemical reduction of NO”, Solid State Ionics 176 (2005) 915–920
    29.黃瑞銘, “直接甲烷固態氧化物燃料電池之積碳與去積碳研究”, 清華大學化工所碩士論文, 民國九十五年
    30. 陳冠蓉, “以Ni-SDC為陽極材料之固態氧化物燃料電池研究”, 清華大學化工所 碩士論文,民國九十四年
    31.A. Weber, E. Ivers-Tiffee, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, 127 (2004) 273-283
    32.J. VAN HERLE, A. J. McEvov and K. RAVINDRANATHAN THAMPI,” A study on the La,Sr,MnO, oxygen cathode”, Electrochimico Acto. Vol. 41. No. 9. (1996) 1447-1454,
    33.K. Kammer, “Electrochemical DeNOx in solid electrolyte cells—an overview”, Applied Catalysis B: Environmental 58 (2005) 33–39
    34.S. Roy, M.S. Hegde, G. Madras, “Catalysis for NOx abatement”, Applied Energy 86 (2009) 2283–2297
    35.A.C.A. Vooys, M.T.M. Koper, R.A. Santen, J.A.R. Veen, “Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes”, Journal of Catalysis 202 (2001) 387–394
    36.A.C.A. Vooys, M.T.M. Koper, R.A. Santen, J.A.R. Veen, “Mechanisms of electrochemical reduction and oxidation of nitric oxide”, Electrochimica Acta 49 (2004) 1307–1314
    37.D. Nazimek, W. C. Bundyra, “Influence of the precursors kind of catalysts on the course of a denox reaction”, Catalysis Today 90 (2004) 39–42
    38.C.N. Costa, P.G. Savva, C. Andronikou, P.S. Lambrou, K. Polychronopoulou, V.C. Belessi, V.N. Stathopoulos, P.J. Pomonis, and A.M. Efstathiou, “An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures”, Journal of Catalysis 209 (2002) 456–471
    39.K. Hansen, K.V. Hansen, “A-site deficient (La0.6Sr0.4)1−sFe0.8Co0.2O3−δ perovskites as SOFC cathodes”, Solid State Ionics 178 (2007) 1379–1384
    40.C. Karavasilis, S. Bebelis, C.G. Vayenas, “Non-faradaic electrochemical modification of catalytic activity: X. ethylene epoxidation on Ag deposited on stabilized ZrO2 in the presence of chl orine moderators”, Journal of Catalysis 160 (1996) 190–204
    41.E.D. Wachsmana, P. Jayaweerab, G. Krishnanb, A. Sanjurjob, “Electrocatalytic reduction of NO on La A B B9O : x 12x x 12y y 32d evidence of electrically enhanced activity”, Solid State Ionics 136–137 (2000) 775–782
    42.H.J.Hwanga, J.W. Moonb, M. Awanoc, “Fabrication of novel type solid electrolyte membrane reactors for exhaust gas purification”, Journal of the European Ceramic Society 24 (2004) 1325–1328
    43.V.A.C. Haanappel, A. Mai, J. Mertens, “Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes”, Solid State Ionics 177 (2006) 2033–2037
    44.F. Garin, “Environmental catalysis”, Catalysis Today 89 (2004) 255–268
    45.D. Nazimek, W. C. Bundyra, “Influence of the precursors kind of catalysts on the course of a denox reaction”, Catalysis Today 90 (2004) 39–42
    46.C.N. Costa, P.G. Savva, C. Andronikou, P.S. Lambrou, K. Polychronopoulou, V.C. Belessi, V.N. Stathopoulos, P.J. Pomonis, and A.M. Efstathiou, “An Investigation of the NO/H2/O2 (Lean De-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures”, Journal of Catalysis 209 (2002) 456–471
    47.J.P. Mart’ınez, D.M. L’opez, D.P. Coll, J.C. Ruiz-Morales, P. N’u˜nez, “Performance of XSCoF (X = Ba, La and Sm) and LSCrX_(X = Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC”, Electrochimica Acta 52 (2007) 2950–2958
    48.吳基榮, “船用柴油引擎氮氧化物(NOx)排放減量技術簡介”, 船舶與海運 18卷(2001) 50-57
    49.T.J. Huang, C.L. Chou, “Electrochemical CO2 reduction with power generation in SOFCs with Cu-added LSCF-GDC cathode” Electrochemistry Communications 11 (2009) 1464–1467

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE