研究生: |
王彥雅 Wang, Yen-Ya |
---|---|
論文名稱: |
掘入歐姆接點對於氧化銦錫源極/汲極全透明氮化鋁鎵/氮化鎵元件影響之探討 Study on Recessed Ohmic Contact for Indium-Tin-Oxide Source/Drain in Fully Transparent AlGaN/GaN Devices |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
盧向成
Lu, Shiang-Cheng 張庭輔 Chang, Ting-Fu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 氮化鎵 、氧化銦錫 、全透明元件 、高電子遷移率電晶體 、歐姆掘入 |
外文關鍵詞: | Gallium Nitride, Indium-Tin-Oxide, fully-transparent device, high electron mobility transistor, ohmic recess |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要對氧化銦錫 (Indium-Tin-Oxide, ITO) 與 n 型氮化鎵 (GaN) 之間的掘入式歐姆 (Ohmic Recess) 接觸特性進行探討,於實驗中我們利用乾蝕刻技術,實作出不同歐姆掘入深度的氮化銦鎵量子井 (InGaN Single Quantum Well) 全透明發光高電子遷移率電晶體 (Light-Emitting High Electron Mobility Transistor, LE-HEMT)。
從實驗結果中我們發現,當歐姆掘入深至二維電子氣 (Two-Dimensional Electron Gas, 2DEG) 位置附近時,ITO 的電流-電壓特性中存在的能障值會下降至接近 0 V,但掘入式歐姆 ITO 電極不論是透過載子穿隧導通或是與 2DEG 直接側向接觸導通接觸阻抗都極大,導致全透明元件電流大小比做為實驗對照組的鈦/鋁/鈦/金 (Ti/Al/Ti/Au) 歐姆電極元件還要小超過兩個數量級。且全透明 LE-HEMT 因為接觸特性差所以電流較小,因此亮度和 Ti/Al/Ti/Au 歐姆電極 LE-HEMT 相比之下較為黯淡。
而實驗結果也顯示當 Ti/Al/Ti/Au高電子遷移率電晶體 (High Electron Mobility Transistor, HEMT) 其歐姆掘入深度在未將氮化鋁鎵完全蝕刻時,接觸阻抗會與掘入深度增加呈現負相關的趨勢。
In this work, properties of recessed ohmic contacts using Indium-Tin-Oxide (ITO) on n-type GaN are investigated. Fully transparent light-emitting high electron mobility transistors (LE-HEMT) were fabricated with different recess depths for ohmic contacts by using dry etching technology.
From experiment results, it is concluded that the value of an offset voltage exhibited in the I-V curves reduces to zero when recessed contact metal is closer to the two-dimensional electron gas (2DEG). However, the contact resistance remains large either the ITO electrode is conducted by tunneling with a thin barrier or in direct contact with 2DEG on sides, which results in a current magnitude of fully transparent devices less than 1/100 times of the reference devices with Ti/Al/Ti/Au electrodes. Because of the poor contact characteristics of the fully transparent LE-HEMT, it also shows a lower light intensity than a Ti/Al/Ti/Au electrode LE-HEMT.
The experimental results also show that for the Ti/Al/Ti/Au HEMT, when the AlGaN at the contacts is partially-recessed instead of over-etched, the contact resistance decreases as the etch depth is increased.
[1] J. Milligan, S. Sheppard, W. Pribble, Y.-F. Wu, G. Muller, and J. Palmour, "SiC and GaN wide bandgap device technology overview," in 2007 IEEE Radar Conference, 2007: IEEE, pp. 960-964.
[2] E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 17, no. 4, pp. 1742-1749, 1999.
[3] O. Ambacher et al., "Role of spontaneous and piezoelectric polarization induced effects in Group‐III nitride based heterostructures and devices," physica status solidi (b), vol. 216, no. 1, pp. 381-389, 1999.
[4] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs," IEEE Transactions on electron devices, vol. 48, no. 3, pp. 450-457, 2001.
[5] G. Greco, F. Iucolano, and F. Roccaforte, "Review of technology for normally-off HEMTs with p-GaN gate," Materials Science in Semiconductor Processing, vol. 78, pp. 96-106, 2018.
[6] J. Pankove, E. Miller, and J. Berkeyheiser, "GaN blue light-emitting diodes," Journal of Luminescence, vol. 5, no. 1, pp. 84-86, 1972.
[7] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters, vol. 48, no. 5, pp. 353-355, 1986.
[8] S. Nakamura, T. M. T. Mukai, and M. S. M. Senoh, "High-power GaN pn junction blue-light-emitting diodes," Japanese Journal of Applied Physics, vol. 30, no. 12A, p. L1998, 1991.
[9] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994.
[10] T. Fujii, Y. Gao, R. Sharma, E. Hu, S. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Applied physics letters, vol. 84, no. 6, pp. 855-857, 2004.
[11] S.-H. Han et al., "Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes," Applied Physics Letters, vol. 96, no. 5, 2010.
[12] Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. Karlicek, and T. Chow, "Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate," Applied Physics Letters, vol. 102, no. 19, 2013.
[13] C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, "Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol. 106, no. 18, 2015.
[14] M. Hartensveld and J. Zhang, "Monolithic integration of GaN nanowire light-emitting diode with field effect transistor," IEEE Electron Device Letters, vol. 40, no. 3, pp. 427-430, 2019.
[15] R. Hoffman, B. J. Norris, and J. Wager, "ZnO-based transparent thin-film transistors," Applied Physics Letters, vol. 82, no. 5, pp. 733-735, 2003.
[16] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, no. 7016, pp. 488-492, 2004.
[17] H.-C. Cheng, C.-F. Chen, and C.-Y. Tsay, "Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method," Applied physics letters, vol. 90, no. 1, 2007.
[18] L. Wang, D.-H. Kim, and I. Adesida, "Direct contact mechanism of Ohmic metallization to AlGaN/GaN heterostructures via Ohmic area recess etching," Applied Physics Letters, vol. 95, no. 17, 2009.
[19] H.-S. Lee, D. S. Lee, and T. Palacios, "AlGaN/GaN high-electron-mobility transistors fabricated through a Au-free technology," IEEE Electron Device Letters, vol. 32, no. 5, pp. 623-625, 2011.
[20] J.-G. Lee, H.-S. Kim, D.-H. Kim, S.-W. Han, K.-S. Seo, and H.-Y. Cha, "Au-free AlGaN/GaN heterostructure field-effect transistor with recessed overhang ohmic contacts using a Ti/Al bilayer," Semiconductor Science and Technology, vol. 30, no. 8, p. 085005, 2015.