簡易檢索 / 詳目顯示

研究生: 阮泰方
Nguyen Thai Phuong
論文名稱: 銀奈米粒子-氧化石墨烯複合式奈米結構之合成機制探討與鑑定
A Facile Synthesis and Characterization of Nanosheet Graphene Oxide-Silver Nanoparticles Hybrid Nanostructure
指導教授: 蔡德豪
Tsai, De-Hao
口試委員: 張高碩
Chang, Kao-Shuo
何榮銘
Ho, Rong-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 53
中文關鍵詞: 氧化石墨烯銀奈米粒子複合式奈米材料膠體穩定性
外文關鍵詞: Graphene oxide, Silver nanoparticles, Nanohybrids, Colloidal stability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展出一套能有系統且簡便地將氧化石墨烯(GO)與銀奈米粒子(AgNP)結合,形成複合式奈米結構的合成與鑑定方法。利用電子穿隧顯微鏡、界達電位分析、電噴灑式即時分析和氣溶膠質量分析技術,可以測定出材料特性,包括物理大小、數量濃度、膠體穩定性、表面電荷、質量和組成。結果顯示複合式奈米粒子可以成功地被合成,並且可以藉由調整AgNP和GO的數量濃度比例,來達到控制大小(mobility size)、粒徑分佈、複合粒子之質量和組成的目的。結果顯示複合式奈米粒子的質量與其粒徑大小呈現正相關的關係,由此可知AgNP在每個複合材料上的數量與dp,m也是呈現正相關的關係。而複合式奈米粒子在膠體中的穩定度可以藉由改變dp,m與界達電位來做評估。當複合式奈米粒子的界達電位在10 mV以下或是 (define as│(IEP + pKa)/2 – pH│) < 1.75則會發生快速聚集的現象。此研究提供了一個有系統地合成GO-AgNP與鑑定性質方法之概念,在生醫發展的應用上有相當的潛力。


    We report a facile approach for the controlled synthesis and characterization graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure. Materials properties, including physical size, number concentration, colloidal stability, surface charge, mass, and conformation of GO-AgNP, were characterized successfully by a combination of electrospray-differential mobility analysis, aerosol particle mass analyzer, transmission electron microscopy, and zeta potential analysis. The results show that the nanohybrids were successfully fabricated. The mobility size, size distributions, mass of nanohybrids and the number of AgNPs and GOs per hybrid were tunable by choosing the number concentration ratios of AgNPs to GOs. The mass of nanohybrids was found to be proportional to mobility size of nanohybrids, indicating that the number of AgNP per hybrid is proportional to dp,m. Colloidal stability of nanohybrids was evaluated through the change of dp,m, and absolute zeta potential. Fast agglomeration was found when the absolute zeta potential of nanohybrids was below 10 mV and /or  (defined as |(IEP + pKa)/2 – pH|) < 1.75. The work presented here provides a proof of concept for systematically synthesizing of GO-AgNP, with the ability in characterization, which has shown to be promising for biomedical applications.

    Acknowledgement i Abstract ii Table of Contents iii List of Figures v List of Abbreviations vii Chapter 1: Introduction 1 1.1. Graphene oxide 1 1.2. Hybridization with NP 5 1.3. Challenges of current work 10 1.4. The use of AgNPs in GO-based nanohybrids 13 1.5. Research objective 16 Chapter 2: Experimental methods 18 2.1. Materials 18 2.2. Instruments 18 2.3. Preparation of GO 20 2.4. BSA-functionalized AgNPs 21 2.5. Preparation of GO-AgNP nanohybrids 21 Chapter 3: Results and discussion 22 3.1. Material properties of GO and surface-functionalized AgNPs 22 3.2. Hybridization of GO and AgNP 27 3.3. Stability of GO-AgNP nanohybrids 34 Chapter 4: Conclusion 41 Chapter 5: Future work and supporting information 42 References 50

    (1) Geim, A. K.; Novoselov, K. S. Nat Mater 2007, 6, 183-191.
    (2) Seabra, A. B.; Paula, A. J.; de Lima, R.; Alves, O. L.; Durán, N. Chemical Research in Toxicology 2014, 27, 159-168.
    (3) Randviir, E. P.; Brownson, D. A. C.; Banks, C. E. Materials Today 2014, 17, 426-432.
    (4) Jung, H. S.; Lee, M.-Y.; Kong, W. H.; Do, I. H.; Hahn, S. K. RSC Advances 2014, 4, 14197-14200.
    (5) Singh, A.; Sinsinbar, G.; Choudhary, M.; Kumar, V.; Pasricha, R.; Verma, H. N.; Singh, S. P.; Arora, K. Sensors and Actuators B: Chemical 2013, 185, 675-684.
    (6) Haldorai, Y.; Kim, B.-K.; Jo, Y.-L.; Shim, J.-J. Materials Chemistry and Physics 2014, 143, 1452-1461.
    (7) Nguyen-Phan, T.-D.; Pham, V. H.; Shin, E. W.; Pham, H.-D.; Kim, S.; Chung, J. S.; Kim, E. J.; Hur, S. H. Chemical Engineering Journal 2011, 170, 226-232.
    (8) Ming, P.; Song, Z.; Gong, S.; Zhang, Y.; Duan, J.; Zhang, Q.; Jiang, L.; Cheng, Q. Journal of Materials Chemistry A 2015, 3, 21194-21200.
    (9) Yang, B.; Liu, Z.; Guo, Z.; Zhang, W.; Wan, M.; Qin, X.; Zhong, H. Applied Surface Science 2014, 316, 22-27.
    (10) Chung, C.; Kim, Y.-K.; Shin, D.; Ryoo, S.-R.; Hong, B. H.; Min, D.-H. Accounts of Chemical Research 2013, 46, 2211-2224.
    (11) Yang, Y.; Asiri, A. M.; Tang, Z.; Du, D.; Lin, Y. Materials Today 2013, 16, 365-373.
    (12) Habiba, K.; Encarnacion-Rosado, J.; Garcia-Pabon, K.; Villalobos-Santos, J. C.; Makarov, V. I.; Avalos, J. A.; Weiner, B. R.; Morell, G. International Journal of Nanomedicine 2016, 11, 107-119.
    (13) Gurunathan, S.; Han, J. W.; Park, J. H.; Kim, E.; Choi, Y.-J.; Kwon, D.-N.; Kim, J.-H. International Journal of Nanomedicine 2015, 10, 6257-6276.
    (14) Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chemical Reviews 2016, 116, 5464-5519.
    (15) Ahadian, S.; Estili, M.; Surya, V. J.; Ramon-Azcon, J.; Liang, X.; Shiku, H.; Ramalingam, M.; Matsue, T.; Sakka, Y.; Bae, H.; Nakajima, K.; Kawazoe, Y.; Khademhosseini, A. Nanoscale 2015, 7, 6436-6443.
    (16) Yang, L.; Wang, F.; Han, H.; Yang, L.; Zhang, G.; Fan, Z. Colloids and Surfaces B: Biointerfaces 2015, 129, 21-29.
    (17) Lv, Y.; Tao, L.; Annie Bligh, S. W.; Yang, H.; Pan, Q.; Zhu, L. Materials Science and Engineering: C 2016, 59, 652-660.
    (18) Hsiao, M.-C.; Ma, C.-C. M.; Chiang, J.-C.; Ho, K.-K.; Chou, T.-Y.; Xie, X.; Tsai, C.-H.; Chang, L.-H.; Hsieh, C.-K. Nanoscale 2013, 5, 5863-5871.
    (19) Liao, W.-H.; Yang, S.-Y.; Hsiao, S.-T.; Wang, Y.-S.; Li, S.-M.; Ma, C.-C. M.; Tien, H.-W.; Zeng, S.-J. ACS Applied Materials & Interfaces 2014, 6, 15802-15812.
    (20) Wang, J.-Y.; Yang, S.-Y.; Huang, Y.-L.; Tien, H.-W.; Chin, W.-K.; Ma, C.-C. M. Journal of Materials Chemistry 2011, 21, 13569-13575.
    (21) Maier, G. Progress in Polymer Science 2001, 26, 3-65.
    (22) Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Chemical Society Reviews 2014, 43, 5288-5301.
    (23) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chemical Society Reviews 2010, 39, 228-240.
    (24) Brodie, B. C. Philosophical Transactions of the Royal Society of London 1859, 149, 249-259.
    (25) Hummers, W. S.; Offeman, R. E. Journal of the American Chemical Society 1958, 80, 1339-1339.
    (26) Lerf, A.; He, H.; Forster, M.; Klinowski, J. The Journal of Physical Chemistry B 1998, 102, 4477-4482.
    (27) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806-4814.
    (28) Turcheniuk, K.; Boukherroub, R.; Szunerits, S. Journal of Materials Chemistry B 2015, 3, 4301-4324.
    (29) Wang, Y.-W.; Cao, A.; Jiang, Y.; Zhang, X.; Liu, J.-H.; Liu, Y.; Wang, H. ACS Applied Materials & Interfaces 2014, 6, 2791-2798.
    (30) Yang, Y.; Shi, H.; Wang, Y.; Shi, B.; Guo, L.; Wu, D.; Yang, S.; Wu, H. Journal of Biomaterials Applications 2016, 30, 810-822.
    (31) Nguyen, V. H.; Kim, B.-K.; Jo, Y.-L.; Shim, J.-J. The Journal of Supercritical Fluids 2012, 72, 28-35.
    (32) Gao, N.; Yang, T.; Liu, T.; Zou, Y.; Jiang, J. RSC Advances 2015, 5, 55801-55807.
    (33) Tang, J.; Chen, Q.; Xu, L.; Zhang, S.; Feng, L.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. ACS Applied Materials & Interfaces 2013, 5, 3867-3874.
    (34) de Faria, A. F.; Martinez, D. S. T.; Meira, S. M. M.; de Moraes, A. C. M.; Brandelli, A.; Filho, A. G. S.; Alves, O. L. Colloids and Surfaces B: Biointerfaces 2014, 113, 115-124.
    (35) Fan, Z.; Kanchanapally, R.; Ray, P. C. The Journal of Physical Chemistry Letters 2013, 4, 3813-3818.
    (36) Turcheniuk, K.; Dumych, T.; Bilyy, R.; Turcheniuk, V.; Bouckaert, J.; Vovk, V.; Chopyak, V.; Zaitsev, V.; Mariot, P.; Prevarskaya, N.; Boukherroub, R.; Szunerits, S. RSC Advances 2016, 6, 1600-1610.
    (37) Lim, D.-K.; Barhoumi, A.; Wylie, R. G.; Reznor, G.; Langer, R. S.; Kohane, D. S. Nano Letters 2013, 13, 4075-4079.
    (38) Fu, X.; Chen, L.; Li, J.; Lin, M.; You, H.; Wang, W. Biosensors and Bioelectronics 2012, 34, 227-231.
    (39) Zhou, S.; Guo, Y.; Zhao, J. Physical Chemistry Chemical Physics 2016, 18, 10607-10615.
    (40) Li, Z.; Guo, Q.; Li, Z.; Fan, G.; Xiong, D.-B.; Su, Y.; Zhang, J.; Zhang, D. Nano Letters 2015, 15, 8077-8083.
    (41) Huang, R.-C.; Chiu, W.-J.; Po-Jung Lai, I.; Huang, C.-C. Scientific Reports 2015, 5, 10292.
    (42) Dembereldorj, U.; Choi, S. Y.; Ganbold, E.-O.; Song, N. W.; Kim, D.; Choo, J.; Lee, S. Y.; Kim, S.; Joo, S.-W. Photochemistry and Photobiology 2014, 90, 659-666.
    (43) He, L.; Tjong, S. C. RSC Advances 2015, 5, 15070-15076.
    (44) Jiao, T.; Guo, H.; Zhang, Q.; Peng, Q.; Tang, Y.; Yan, X.; Li, B. Scientific Reports 2015, 5, 11873.
    (45) Chang, Q.; Wang, Z.; Wang, J.; Yan, Y.; Ma, Z.; Zhu, J.; Shi, W.; Chen, Q.; Yu, Q.; Huang, L. Nanoscale 2014, 6, 5410-5415.
    (46) Yin, P. T.; Kim, T.-H.; Choi, J.-W.; Lee, K.-B. Physical Chemistry Chemical Physics 2013, 15, 12785-12799.
    (47) Yin, P. T.; Shah, S.; Chhowalla, M.; Lee, K.-B. Chemical Reviews 2015, 115, 2483-2531.
    (48) Wan, Y.; Wang, Y.; Wu, J.; Zhang, D. Analytical Chemistry 2011, 83, 648-653.
    (49) Ma, X.; Qu, Q.; Zhao, Y.; Luo, Z.; Zhao, Y.; Ng, K. W.; Zhao, Y. Journal of Materials Chemistry B 2013, 1, 6495-6500.
    (50) Hu, C.; Liu, Y.; Qin, J.; Nie, G.; Lei, B.; Xiao, Y.; Zheng, M.; Rong, J. ACS Applied Materials & Interfaces 2013, 5, 4760-4768.
    (51) Ma, J.; Zhang, J.; Xiong, Z.; Yong, Y.; Zhao, X. S. Journal of Materials Chemistry 2011, 21, 3350-3352.
    (52) Xu, W.-P.; Zhang, L.-C.; Li, J.-P.; Lu, Y.; Li, H.-H.; Ma, Y.-N.; Wang, W.-D.; Yu, S.-H. Journal of Materials Chemistry 2011, 21, 4593-4597.
    (53) Zhuo, Q.; Ma, Y.; Gao, J.; Zhang, P.; Xia, Y.; Tian, Y.; Sun, X.; Zhong, J.; Sun, X. Inorganic Chemistry 2013, 52, 3141-3147.
    (54) Li, S.-D.; Huang, L. Molecular Pharmaceutics 2008, 5, 496-504.
    (55) De Jong, W. H.; Borm, P. J. A. International Journal of Nanomedicine 2008, 3, 133-149.
    (56) Gao, J.; Huang, X.; Liu, H.; Zan, F.; Ren, J. Langmuir 2012, 28, 4464-4471.
    (57) Lee, S.-M.; Tsai, D.-H.; Hackley, V. A.; Brechbiel, M. W.; Cook, R. F. Nanoscale 2013, 5, 5252-5256.
    (58) Lazzari, S.; Moscatelli, D.; Codari, F.; Salmona, M.; Morbidelli, M.; Diomede, L. Journal of Nanoparticle Research 2012, 14, 1-10.
    (59) Moore, T. L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Chemical Society Reviews 2015, 44, 6287-6305.
    (60) Koppolu, B.; Rahimi, M.; Nattama, S.; Wadajkar, A.; Nguyen, K. T. Nanomedicine : nanotechnology, biology, and medicine 2010, 6, 355-361.
    (61) Wu, P.-C.; Shieh, D.-B.; Cheng, F.-Y. RSC Advances 2014, 4, 53297-53306.
    (62) Franco-Molina, M. A.; Mendoza-Gamboa, E.; Sierra-Rivera, C. A.; Gómez-Flores, R. A.; Zapata-Benavides, P.; Castillo-Tello, P.; Alcocer-González, J. M.; Miranda-Hernández, D. F.; Tamez-Guerra, R. S.; Rodríguez-Padilla, C. Journal of Experimental & Clinical Cancer Research : CR 2010, 29, 148-148.
    (63) Sanpui, P.; Chattopadhyay, A.; Ghosh, S. S. ACS Applied Materials & Interfaces 2011, 3, 218-228.
    (64) Nowack, B.; Krug, H. F.; Height, M. Environmental Science & Technology 2011, 45, 1177-1183.
    (65) Fan, W.; Lee, Y. H.; Pedireddy, S.; Zhang, Q.; Liu, T.; Ling, X. Y. Nanoscale 2014, 6, 4843-4851.
    (66) Kim, Y.-K.; Han, S. W.; Min, D.-H. ACS Applied Materials & Interfaces 2012, 4, 6545-6551.
    (67) Dutta, S.; Ray, C.; Sarkar, S.; Pradhan, M.; Negishi, Y.; Pal, T. ACS Applied Materials & Interfaces 2013, 5, 8724-8732.
    (68) Murphy, S.; Huang, L.; Kamat, P. V. The Journal of Physical Chemistry C 2013, 117, 4740-4747.
    (69) Shao, W.; Liu, X.; Min, H.; Dong, G.; Feng, Q.; Zuo, S. ACS Applied Materials & Interfaces 2015, 7, 6966-6973.
    (70) Chook, S. W.; Chia, C. H.; Zakaria, S.; Ayob, M. K.; Huang, N. M.; Neoh, H. M.; Jamal, R. RSC Advances 2015, 5, 26263-26268.
    (71) Li, C.; Wang, X.; Chen, F.; Zhang, C.; Zhi, X.; Wang, K.; Cui, D. Biomaterials 2013, 34, 3882-3890.
    (72) Huang, J.; Zhang, L.; Chen, B.; Ji, N.; Chen, F.; Zhang, Y.; Zhang, Z. Nanoscale 2010, 2, 2733-2738.
    (73) Zhu, Z.; Ma, L.; Su, M.; Liu, D.; Wang, Z. Journal of Materials Chemistry B 2013, 1, 1432-1438.
    (74) Balcioglu, M.; Rana, M.; Yigit, M. V. Journal of Materials Chemistry B 2013, 1, 6187-6193.
    (75) Tai, J.-T.; Lai, C.-S.; Ho, H.-C.; Yeh, Y.-S.; Wang, H.-F.; Ho, R.-M.; Tsai, D.-H. Langmuir 2014, 30, 12755-12764.
    (76) Li, X.; Lenhart, J. J. Environmental Science & Technology 2012, 46, 5378-5386.
    (77) Garg, S.; Rong, H.; Miller, C. J.; Waite, T. D. Environmental Science & Technology 2016, 50, 3890-3896.
    (78) Tsai, D.-H.; DelRio, F. W.; Keene, A. M.; Tyner, K. M.; MacCuspie, R. I.; Cho, T. J.; Zachariah, M. R.; Hackley, V. A. Langmuir 2011, 27, 2464-2477.
    (79) Tsai, D.-H.; Davila-Morris, M.; DelRio, F. W.; Guha, S.; Zachariah, M. R.; Hackley, V. A. Langmuir 2011, 27, 9302-9313.
    (80) Wan, X.-M.; Zheng, F.; Zhang, L.; Miao, Y.-Y.; Man, N.; Wen, L.-P. International Journal of Cancer 2011, 129, 1087-1095.
    (81) Rezwan, K.; Meier, L. P.; Rezwan, M.; Vörös, J.; Textor, M.; Gauckler, L. J. Langmuir 2004, 20, 10055-10061.
    (82) Hu, C.; Yang, D.-P.; Xu, K.; Cao, H.; Wu, B.; Cui, D.; Jia, N. Analytical Chemistry 2012, 84, 10324-10331.
    (83) Tsai, D.-H.; Cho, T. J.; DelRio, F. W.; Taurozzi, J.; Zachariah, M. R.; Hackley, V. A. Journal of the American Chemical Society 2011, 133, 8884-8887.
    (84) Tai, J.-T.; Lai, Y.-C.; Yang, J.-H.; Ho, H.-C.; Wang, H.-F.; Ho, R.-M.; Tsai, D.-H. Analytical Chemistry 2015, 87, 3884-3889.
    (85) Gautam, S.; Dubey, P.; Gupta, M. N. Colloids and Surfaces B: Biointerfaces 2013, 102, 879-883.
    (86) Liu, J.; Fu, S.; Yuan, B.; Li, Y.; Deng, Z. Journal of the American Chemical Society 2010, 132, 7279-7281.
    (87) Lai, Y.-C.; Lai, C.-S.; Tai, J.-T.; Nguyen, T. P.; Wang, H.-L.; Lin, C.-Y.; Tsai, T.-Y.; Ho, H.-C.; Wang, P.-H.; Liao, Y.-C.; Tsai, D.-H. Advanced Powder Technology 2015, 26, 1676-1686.
    (88) Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Li, J.; Ji, Y.; Wang, X. Environmental Science & Technology 2016, 50, 3658-3667.
    (89) Yang, Z.; Yan, H.; Yang, H.; Li, H.; Li, A.; Cheng, R. Water Research 2013, 47, 3037-3046.
    (90) Yang, Z.; Yuan, B.; Huang, X.; Zhou, J.; Cai, J.; Yang, H.; Li, A.; Cheng, R. Water Research 2012, 46, 107-114.
    (91) Yang, S.; Feng, X.; Ivanovici, S.; Müllen, K. Angewandte Chemie International Edition 2010, 49, 8408-8411.
    (92) Zangmeister, C. D.; Ma, X.; Zachariah, M. R. Chemistry of Materials 2012, 24, 2554-2557.
    (93) Gao, W.; Chan, J. M.; Farokhzad, O. C. Molecular Pharmaceutics 2010, 7, 1913-1920.
    (94) Huiqiao Wang, J. L., Xuan Wu, Zhonghua Tong and Zhaoxiang Deng. Nanotechnology 2013, 205102.
    (95) Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M. Nano Energy 2012, 1, 107-131.
    (96) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chemical Reviews 1995, 95, 69-96.
    (97) Chen, X.; Mao, S. S. Chemical Reviews 2007, 107, 2891-2959.
    (98) Zhou, K.; Zhu, Y.; Yang, X.; Jiang, X.; Li, C. New Journal of Chemistry 2011, 35, 353-359.
    (99) Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J. ACS Catalysis 2012, 2, 949-956.
    (100) Lee, J. S.; You, K. H.; Park, C. B. Advanced Materials 2012, 24, 1084-1088.
    (101) Kumar, A.; Jain, A. K. Journal of Molecular Catalysis A: Chemical 2001, 165, 265-273.
    (102) Xia, X.-H.; Jia, Z.-J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L.-L. Carbon 2007, 45, 717-721.
    (103) Gao, W.; Wang, M.; Ran, C.; Yao, X.; Yang, H.; Liu, J.; He, D.; Bai, J. Nanoscale 2014, 6, 5498-5508.
    (104) Lee, E.; Hong, J.-Y.; Kang, H.; Jang, J. Journal of Hazardous Materials 2012, 219–220, 13-18.
    (105) Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y. The Journal of Physical Chemistry C 2011, 115, 10694-10701.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE