研究生: |
張庭輔 Chang, Ting-Fu |
---|---|
論文名稱: |
不同隔離方式與不同種磊晶參數對高壓氮化鋁鎵/氮化鎵高電子遷移率電晶體的影響 The characteristic of AlGaN/GaN HEMT with different isolation and epitaxial layers |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
龔正
徐碩鴻 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 氮化鎵/氮化鋁鎵 、高崩潰電壓 、不同隔離方式 、不同磊晶結構 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在本篇論文當中,我們利用成長在矽基板上的氮化鎵/氮化鋁鎵試片製作高電子遷移率電晶體,實驗的方向分為兩個主軸。不同的磊晶層結構的影響以及不同格離方式對崩潰的關係。
首先是不同的基板磊晶方式,將一樣的製程應用在不同磊晶層的試片上,總共使用三種系列的試片,(1) 使用低阻基板且總磊晶層厚度約為4.8-μm,(2) 同樣使用低阻基板但是磊晶層加厚到5.8-μm,期望可以得到更高的崩潰電壓,(3) 使用高阻基板但是磊晶層指有2.6-μm,原訂是設計給高頻元件使用的。在一般電性方面,確實是受到試片的二微電子氣濃度以及電子遷移率的大小所主導,試片(3)擁有最低的片電阻故得到最高的飽和電流密度以及最低的導通電阻,試片(2)的崩潰電壓可以達到2730V,發生在Lgd = 40-μm或60-μm的元件,在量測時基板接地並且浸泡在冷卻液中,最高的BFOM發生在試片(1)Lgd = 20-μm的元件達到900MW/cm2,因為在崩潰電壓以及導通電阻達到最加的平衡
第二個主軸是不同的隔離方式對逆向特性的影響,選用鋅離子佈植、氧離子佈植還有使用mesa的結構。,實驗結果使用氧離子佈植區域的片電阻最高達到7.57×1012 Ω/⃞,mesa的則是最低只有1.48×109 Ω/⃞,在調變溫的量測下,mesa的活化能是最低的只有0.391 eV,表示mesa是最安定的絕緣方式,在高壓量測時,當Vd = 1kV, Vg = -5V,mesa會有較大的漏電流密度6.33×10-4 mA/mm,當硬性崩潰時的電壓則差不多,在低壓的狀態下,接觸到側壁的元件會有較大的漏電流密度,當逆偏壓再上升時漏電曲線會與其他的對照組相符。
參考文獻
[1] J. Liu, Y. G. Zhou, R. M. Chu, Y. Cai, K. J. Chen, and K. M. Lau, “Highly linear Al0.3Ga0.7N/Al0.05Ga0.95N/GaN composite-channel HEMTs,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 145–147, Mar. 2005.
[2] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, Aug. 1994.
[3] E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean, J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. Asif Khan, M. S. Shur, R. Gaska, and D. Maude, “High electron mobility in AlGaN/GaN heterostructures grown on bulk GaN substrates, ” Appl. Phys. Lett., vol.77, no. 16, Oct. 2000.
[4] M. Kanamura, T. Kikkawa, T. Iwai, K. Imanishi, T. Kubo, and K. Joshin, “An over 100 W n-GaN/n-AlGaN/GaN MIS-HEMT power amplifier for wireless base station applications, ” in IEDM Tech. Dig., Washington, DC, Dec. 4–7, pp. 572–575, 2005.
[5] A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter. “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlGaN heterojunctions,” App. Phys. Lett., vol.60, no. 24, pp. 3027–9, 1992.
[6] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors, ” App.. Physics Lett., 69, pp. 1438-1440, 1996.
[7] S. Yoshida , H. Ishii, J. Li, D. Wang and Masakazu, “A high-power AlGaN/GaN heterojunction field-effect transistor,” Solid-State Electronics, vol. 47, Issue 3, pp. 589–592, Mar. 2003.
[8] N. Q. Zhang, S. Keller,G. Parish, S. Heilman, S. P. DenBaars, and U. K. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Lett., vol. 21, no. 9, pp. 421–423, Sep. 2000.
[9] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Lett., vol 25, no 4, pp 161-163, April 2004.
[10] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra “High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 713–715, Sep. 2006.
[11] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-State Electronics, vol.50, pp. 1057–1061, 2006.
[12] Y. Uemoto, D. Shibata, M. Yanagihara, H. Ishida, H. Matsuo, S. Ngai, N. Batta, M. Li, T. Ueda, T. Tanaka, and D. Ueda, “8300V Blocking Voltage AlGaN/GaN Power HFET with Thick Poly-AlN Passivation,” IEDM Tech Dig., pp. 861-864 , 2007
[13] Ikeda, N.; Kaya, S.; Jiang Li; Kokawa, T.; Masuda, M.; Katoh, S.,” High-power AlGaN/GaN MIS-HFETs with field-plates on Si substrates” ISPSD, 251-254, 2009
[14] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu , “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures” J. Appl. Phys., 85, 3222 (1999);
[15] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett., vol. 19, no.3, pp. 89–91, Mar. 1998.
[16] T. Oishi, N. Miura, M. Suita, T. Nanjo, Y. Abe, T. O. H. Ishikawa, T. Egawa, and T. Jimbo, “Highly resistive GaN layers formed by ion implantation of Zn along the c axis,” J. Appl. Phys., vol. 94, no.3 , pp. 1662–1666, Aug. 2003.
[17] J.Y. Shiu, J.C. Huang, V. Desmaris, C.T. Chang, C.Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E.Y. Chang, “Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 28, no.6 , pp. 476–478, Jun. 2007.
[18] K. Nomoto, T. Tajima, T. Mishima, M. Satoh, and T. Nakamura, “Remarkable Reduction of On-Resistance by Ion Implantation in GaN/AlGaN/GaN HEMTs With Low Gate Leakage Current,” IEEE Electron Device Lett., vol. 28, no.11 , pp. 476–478, Nov. 2007.
[19] N. Maeda, K. Tsubaki, T. Saitoh, and N. Kobayashi, “High-temperature electron transport properties in AlGaN/GaN heterostructures”, Appl. Phys. Lett., vol. 79, no.11, pp. 1634-1636, Sep. 2001.
[20] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, “A Study on Current Collapse in AlGaN/GaN HEMTs Induced by Bias Stress,” IEEE Trans. Electron Devices, vol. 50, no.10 , pp. 2015–2020, Oct. 2003.