簡易檢索 / 詳目顯示

研究生: 黃旭初
Shiu-Chu Huang
論文名稱: 針對無線感測器平台的量化評估與實際仿擬方法
Quantitative Evaluation and Practical Emulation Methodologies for Wireless Sensor Platforms
指導教授: 許雅三
Yarsun Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 71
中文關鍵詞: 無線感測器
外文關鍵詞: wireless, sensor, platform, evaluation, emulation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,無線感測器網路(Wireless sensor network)已
    被廣泛地運用於醫學、工業、娛樂、保全、軍事等領域。不
    同規格的平台也不斷地推陳出新,以用來符合各種應用的需
    求。然而,卻很少使用者探討這些平台的性能,是否與其本
    身宣稱的相同,以致於可能降低工作效率或者耗費多餘成本
    而不自知,而目前的研究中也缺乏對平台進行評估測試的方
    法與環境。
    針對這些問題,本論文中首先簡述數種無線感測器平台
    常見的公制(metrics)類型,並針對其中影響資料精確度的
    量化準確性及取樣週期提出適當的測量方法,即利用直方圖
    法與鋸齒波形取樣計算出其數據與時間精確度。由實驗結果
    可看出無線感測器平台在系統層次的確會出現效能的減損。
    另外對於特定的應用所重視的各種公制,將量測到的效能做
    幾何平均數的計算,可做為平台整體的合適度評估。
    至於無線感測環境的仿擬方面,基於取樣定理與雲規線
    (spline)內插法來實現輸入的類比訊號還原,能夠有效地節
    省硬體的儲存空間。將還原出的訊號予以數位化後,可提供
    給後端的數模轉換器設備運作。操作的部份主要是利用
    National Instrument Labview 軟體,完成所需的訊號處理、
    分析、儀器控制和仿擬系統的人機介面。
    我們期望這些評估與仿擬的方法,能幫助使用者更有效
    地挑選或者測試無線感測器平台,從而督促研發者致力於更
    謹慎的開發設計,推動整體無線感測器網路與平台技術的提
    昇與進步。


    Wireless sensor network (WSN) is a popular research topic in manifold applications including
    medical care, industrial control, entertainment, security, military defense, and other possible
    fields. Developers therefore ceaselessly brings forth different sensor platforms to deal with
    these applications. However, little eyesight is focused on the platform’s actual performance.
    Since few researches and methods nowadays are able to evaluate WSN platforms, users tend
    to roughly guess the overall performance through looking up the data sheets or speculations
    of the composed devices. Oversights within these processes might consume redundant cost or
    decrease the work efficiency. Besides methodologies for evaluation, lacking of WSN emulation
    environment and benchmarking suites are also critical issues for platform selection.
    In this thesis, we propose practical methodologies to quantitate the metrics that affect
    WSN system’s data quality: conversion accuracy and timing precision. The measured results
    show that these deviations are larger than the desk study value. Besides, we address that
    for a certain application, the geometric mean of corresponding metrics can be utilized as its
    overall fitness.
    Regarding the WSN system emulation, environmental signal reconstructions are fulfilled
    according to sampling theory and spline interpolation. These signals are digitized and stored
    afterward to support devices for data playback operation. Also, data processing, instrument
    control, and emulation graphical user interface are handled by National Instruments Lab-
    VIEW software.By these emulation and evaluation methods, we hope users can make efficient platform selections
    and testings. Moreover, pressing WSN developers to make more efforts in systematic
    considerations and design platforms more authentically. Consequently, making contributions
    to the progress and improvement of the overall wireless sensor network technology field.

    Contents Abstract i Contents iii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Background and Related Work 3 2.1 WSN Platform Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Sensing devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 Conversion Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.5 Communication Modality . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Metrics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Application Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Problem Statement 14 3.1 System Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Signal Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 Data Playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 System-Level Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Evaluation Methodologies . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.3 Overall Performance Scoring . . . . . . . . . . . . . . . . . . . . . . . 18 4 Theory 19 4.1 Nyquist-Shannon Sampling Theorem . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Theory of Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Methodology 27 5.1 Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.1 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1.2 Criteria for Qualifying Signals . . . . . . . . . . . . . . . . . . . . . . 31 5.1.3 Data Playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.4 Reference Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.1 Metric Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.2 Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.3 Overall Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 Experiment 44 6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.1.1 Tested Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.1.2 Evaluation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.1.3 Emulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2 Experiment Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.1 Signal Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.2 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7 Conclusion 66 7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks:
    a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, March 2002.
    [2] J. Hill, “System architecture for wireless sensor network,” Ph.D. dissertation, University
    of California,Berkeley, 2003.
    [3] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on
    Selevted Areas in Communications, vol. 17, no. 4, pp. 539–550, April 1999.
    [4] P. H. Chou and C. Park, “Energy-efficient platform designs for real-world wireless sensing
    applications,” in Proc. IEEE/ACM International Conference on Computer-aided
    Design, 2005.
    [5] C. Park and P. H. Chou, “Power utility maximization for multiple-supply systems by a
    load-match switch,” in Proceedings of the 2004 international symposium on Low power
    electronics and design, 2004, pp. 168–173.
    [6] A. Chandrakasan, R. Min, M. Bhardwaj, S. H. Cho, and A.Wang, “Power aware wireless
    microsensor systems,” in Proc. The 28th ESSCIRC Solid-State Circuits Conference,
    2002, Sep. 2002, pp. 47–54.
    [7] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design techniques for systemlevel
    dynamic power management,” in IEEE Transactions on very large scale integration
    (VLSI) systems, vol. 8, no. 3, June 2000.
    [8] L. C. Weng, X. J. Wang, and B. Liu, “A survey of dynamic power optimization techniques,”
    in Proc. The 3rd IEEE International Workshop on System-on-Chip for Real-
    Time Applications, June 2003, pp. 48–52.
    [9] A. Wang and A. Chandrakasan, “Energy-efficient dsps for wireless sensor networks,”
    IEEE Signal Processing Magazine, vol. 19, no. 4, pp. 68–78, July 2002.
    [10] M. Hempstead, M. Welsh, and D. Brooks, “TinyBench: the case for a standardized
    benchmark suite for tinyos based wireless sensor network devices,” in Proc. 29th Annual
    IEEE International Conference on Local Computer Networks (LCN), Nov. 2004, pp.
    585–586.
    [11] L. Nazhandali, M. Minuth, and T. Austin, “SenseBench: toward an accurate evaluation
    of sensor network processors,” in Proc. IEEE International Symposim on Workload
    Characterization, Oct. 2005, pp. 197–203.
    [12] S. Kumar, A. Arora, and T. H. Lai, “On the lifetime analysis of always-on wireless
    sensor network applications,” in IEEE International Conference on Mobile Ad-hoc and
    Sensor Systems, 2005.
    [13] Y. W. Law, J. Doumen, and P. Hartel, “Survey and benchmark of block ciphers for
    wireless sensor networks,” ACM Transactions on Sensor Networks (TOSN), vol. 2, pp.
    65–93, Feb. 2006.
    [14] C. Park, J. Liu, and P. H. Chou, “B#: a battery emulator and power-profiling instrument,”
    in IEEE Design and Test of Computers, vol. 22, 2005, pp. 150–159.
    [15] D. Li and P. H. Chou, “Maximizing efficiency of solar-powered systems by load
    matching,” in Proc. International Symposium on Low Power Electronics and Design
    (ISLPED), Aug. 2004, pp. 162–167.
    [16] C. Park and P. H. Chou, “EmPro: an environment/energy emulation and profiling
    platform for wireless sensor networks,” in Proc. 3rd Annual IEEE Communications
    Society on Sensor and Ad Hoc Communications and Networks(SECON), vol. 1, Sept.
    2006, pp. 158–167.
    [17] ——, “Eco: Ultra-wearable and expandable wireless sensor platform,” in Proc. 3rd
    International Workshop on Body Sensor Networks, 2006.
    [18] A. Kaw and M. Keteltas, “Interpolation,” 2003. [Online]. Available: http:
    //numericalmethods.eng.usf.edu/mws/civ/05inp/mws civ inp txt spline.pdf
    [19] N. Soo, Jitter Measurement Techniques, Pericom Application Brief AB36, 2000.
    [20] Jitter Measurements for CLK Generators or Synthesizers, MAXIM Application Note
    2744, Sept. 2003. [Online]. Available: http://www.maxim-ic.com/an2744
    [21] Standard for Digitizing Wafeform Recorders, IEEE 1057, Dec. 1994.
    [22] A. Serra, “New measurement procedure for the static test of adcs,” in Proc. 17th IEEE
    Instrumentation and Measurement Technology Conference, 2000.
    [23] F. Alegria, P. Arpaia, A. M. da Cruz Serra, and P. Daponte, “Performance analysis
    of an adc histogram test using small triangular waves,” IEEE Transactions On Instrumentation
    and Measurement, vol. 51, no. 4, pp. 723–729, Aug. 2002.
    [24] G. Pretzl, “Dynamic testing of high-speed a/d converters,” IEEE Journal of Solid-State
    Circuits, vol. 13, no. 3, pp. 368–371, 1978.
    [25] J. Blair, “Histogram measurement of adc nonlinearities using sine waves,” IEEE Transactions
    on Instrument and Measurement, vol. 43, no. 3, pp. 373–383, June 1994.
    [26] M. Vanden, J. Schoukens, and J. Renneboog, “Dynamic testing and diagnostics of a/d
    converters,” IEEE Transactions on Circuits and Systems, vol. 33, no. 8, pp. 775–785,
    Aug. 1986.
    [27] A.Tarantola, Elements for physics - Quantities, qualities and intrinsic theories.
    Springer, 2006. [Online]. Available: http://www.ipgp.jussieu.fr/tarantola/Files/
    Professional/Books/ElementsForPhysics-ScreenViewing.pdf
    [28] MICA2 Datasheet, Crossbow Technology, Inc. [Online]. Available: http://www.xbow.
    com/Products/Product pdf files/Wireless pdf/MICA2 Datasheet.pdf
    [29] NI 6013/6014 User Manual - Multifunction I/O Devices for PCI Bus Computers, National
    Instruments, Oct. 2002.
    [30] S. Y. Yang, “Signal emulator for quantitative evaluation of wireless sensor platforms,”
    Master’s thesis, National Tsing-Hua University,Taiwan, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE