研究生: |
游靜芳 Yu, Ching-Fang |
---|---|
論文名稱: |
探討介白素三號與基質金屬蛋白酶-2於小鼠腫瘤內所扮演的角色 The Roles of Interleukin-3 and Matrix Metalloproteinase-2 on Murine Tumor Growth |
指導教授: |
江啟勳
Chiang, Chi-Shiun |
口試委員: |
邱信程
Chiu, Hsin-Cheng 張建文 Chang, Chien-Wen 洪志宏 Hong, Ji-Hong 魏國珍 Wei, Kuo-Chen |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 介白素三號 、基質金屬蛋白酶-2 、攝護腺癌 、星狀膠質瘤 、前驅藥物治療 、放射治療 |
外文關鍵詞: | Interleukin-3, Matrix Metalloproteinase-2, Prostate cancer, Astrocytoma, Prodrug therapy, Radiotherapy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
惡性腫瘤至今仍是人類最主要的死因,因此開發新的療法以促進癌症治療效用是
目前最迫切的議題。本研究主要目的為探討腫瘤微環境對於癌症治療的影響並且
利用兩種實驗模式以達到此目的:(1)過度表現介白素三號(IL-3)於TRAMP-C1
攝護腺癌細胞上以吸引或活化腫瘤相關巨噬細胞;(2)抑制基質金屬蛋白酶-2
(MMP-2)以調控ALTS1C1 腦癌之腫瘤微環境。第一個研究結果發現同時表現介
白素三號會增強自殺基因系統(HSV-1tk/GCV)在動物實驗中抗腫瘤的效用,但細
胞實驗則無。結合自殺基因治療會使原本由IL-3 活化而具有IL-4 顯著表現的淋
巴細胞轉變成IFN-顯著表現的淋巴細胞。利用鹿角菜膠去除體內巨噬細胞或利
用L-NAME 抑制一氧化氮表現都會降低結合治療的效用。這些研究證明IL-3 藉
由巨噬細胞或一氧化氮相關的途徑以增強自殺基因療法的抗腫瘤效用。第二個研
究結果顯示利用siRNA 將MMP-2 抑制後可以延長腦腫瘤小鼠的平均存活天數。
抑制MMP-2 使得腦腫瘤大小及細胞增生指標Ki67 與ALTS1C1 腫瘤相比皆大幅
下降。而從少量的浸潤小島數目及侵襲指標GLUT-1 表現降低可以證明MMP-2
抑制會導致腦瘤細胞侵襲能力下降。有趣的是血管密度並沒有因抑制MMP-2 而
下降,但由周圍細胞貼覆血管的比例下降可知血管的功能卻因抑制MMP-2 已經
大幅減弱。此研究也證明將MMP-2 抑制後與放射線治療結合可以延緩小鼠腦腫
瘤的生長,達到顯著性的治療療效。總結來說,本篇研究提供一個可行的治療方
法證明IL-3 結合自殺基因療法可以促進對於攝護腺癌的治療效用。另外也證明
MMP-2 對於ALTS1C1 小鼠腦腫瘤侵襲周邊組織的能力及吸引周圍細胞進入腫
瘤內部的途徑的確扮演一個重要角色,且MMP-2 抑制後可以增強放射治療對於
腦癌的治療效用。
Malignant tumors remain the main death-caused reason of human at present. The novel strategies are necessary to be developed for improving the efficiency of cancer therapy. This study is aimed to explore the effects of tumor microenvironment on cancer therapy and two approaches were utilized to achieve the goal: (1) To attract or activate tumor-associate macrophages (TAMs) by over-expressing interleukin-3 (IL-3) in TRAMP-C1 prostate tumor
model; (2) To regulate the tumor microenvironment of ALTS1C1 brain tumor by suppressing matrix metalloproteinase-2 (MMP-2) expression. The first study showed that the co-expression of IL-3 enhanced the anti-tumor effect of HSV-TK/GCV therapy in vivo, but not in vitro. The IL3-activated IL-4 dominant lymphocytes became IFN- dominant lymphocytes after combined therapy. The therapeutic effect was inhibited by macrophage depletion using carrageen treatment or nitric oxide blockage using L-NAME administration.
This study demonstrated that IL-3 enhanced HSV-TK/GCV therapy by a macrophage- or NO-dependent anti-tumor pathway. The second study showed that MMP2 expression inhibited by siRNA approach led to the prolonged median survival days of brain tumor-bearing mice. MMP2kd tumors had smaller tumor size and lower Ki67 proliferating index than parental tumors. The invasive ability was decreased as demonstrated by fewer
infiltrating islands and lower invasive marker GLUT-1 expression in MMP2kd tumors. More interesting is that microvascular density (MVD) in MMP2kd tumors was not reduced but vessel function was impaired as shown by decreasing pericyte coverage on blood vessels. This study also demonstrated that radiation prolonged the survival days of MMP2kd tumor-bearing mice significantly. In summary, this study provides a feasible strategy that can
improve the efficacy of prostate tumor treatment by combining IL-3 with suicide gene therapy. This study also demonstrated the critical role of MMP2 on invasiveness of brain tumors and recruitment of pericytes into brain tumor microenvironment and MMP2 inhibition enhanced the effect of radiotherapy.
1. National Cancer Institute Statistical Report: Brain and Other Nervous System
Tumors Diagnosed from 18 SEER Geographic Areas in 2005-2009.
http://seer.cancer.gov/statfacts/html/brain.html.
2. Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, et al. (1983) Regulation of the macrophage content of neoplasms by chemoattractants. Science 220: 210-212.
3. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71-78.
4. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4: 540-550.
5. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, et al. (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100: 2645-2650.
6. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357: 539-545.
7. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860-867. 8. Lewis CE, Leek R, Harris A, McGee JO (1995) Cytokine regulation of
angiogenesis in breast cancer: the role of tumor-associated macrophages. J
Leukoc Biol 57: 747-751.
9. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized
inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211-217.
10. Schutyser E, Struyf S, Proost P, Opdenakker G, Laureys G, et al. (2002)
Identification of biologically active chemokine isoforms from ascitic fluid and
elevated levels of CCL18/pulmonary and activation-regulated chemokine in
ovarian carcinoma. J Biol Chem 277: 24584-24593.
11. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, et al. (1990) Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323: 570-578.
12. Roth JA, Swisher SG, Meyn RE (1999) p53 tumor suppressor gene therapy for cancer. Oncology (Williston Park) 13: 148-154.
13. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285.
14. Simons JW, Mikhak B (1998) Ex-vivo gene therapy using cytokine-transduced tumor vaccines: molecular and clinical pharmacology. Semin Oncol 25: 661-676.
15. Faltus T, Yuan J, Zimmer B, Kramer A, Loibl S, et al. (2004) Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia 6: 786-795.
16. Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes
thymidine kinase genes: paradigm for a prospective cancer control strategy.
Cancer Res 46: 5276-5281.
17. Fillat C, Carrio M, Cascante A, Sangro B (2003) Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther 3: 13-26.
18. Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L, et al. (1977)
Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)
guanine. Proc Natl Acad Sci U S A 74: 5716-5720.
19. Moolten FL, Wells JM (1990) Curability of tumors bearing herpes thymidine
kinase genes transferred by retroviral vectors. J Natl Cancer Inst 82: 297-300.
20. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, et al.
(1993) The "bystander effect": tumor regression when a fraction of the tumor
mass is genetically modified. Cancer Res 53: 5274-5283.
21. Takamiya Y, Short MP, Ezzeddine ZD, Moolten FL, Breakefield XO, et al. (1992) Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J Neurosci Res 33: 493-503.
22. Rainov NG, Kramm CM, Aboody-Guterman K, Chase M, Ueki K, et al. (1996) Retrovirus-mediated gene therapy of experimental brain neoplasms using the herpes simplex virus-thymidine kinase/ganciclovir paradigm. Cancer Gene Ther 3: 99-106.
23. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, et al. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550-1552.
24. Freeman SM, Ramesh R, Shastri M, Munshi A, Jensen AK, et al. (1995) The role of cytokines in mediating the bystander effect using HSV-TK xenogeneic cells. Cancer Lett 92: 167-174.
25. Ramesh R, Marrogi AJ, Munshi A, Abboud CN, Freeman SM (1996) In vivo
analysis of the 'bystander effect': a cytokine cascade. Exp Hematol 24: 829-838.
26. van Dillen IJ, Mulder NH, Vaalburg W, de Vries EF, Hospers GA (2002) Influence of the bystander effect on HSV-tk/GCV gene therapy. A review. Curr Gene Ther 2: 307-322.
27. Elshami AA, Saavedra A, Zhang H, Kucharczuk JC, Spray DC, et al. (1996) Gap junctions play a role in the 'bystander effect' of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther 3: 85-92.
28. Freeman SM, Ramesh R, Marrogi AJ (1997) Immune system in suicide-gene therapy. Lancet 349: 2-3.
29. Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann JL, et al. (1993)
Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci U S A 90: 7024-7028.
30. Black ME, Kokoris MS, Sabo P (2001) Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve
prodrug-mediated tumor cell killing. Cancer Res 61: 3022-3026.
31. Wiewrodt R, Amin K, Kiefer M, Jovanovic VP, Kapoor V, et al. (2003)
Adenovirus-mediated gene transfer of enhanced Herpes simplex virus
thymidine kinase mutants improves prodrug-mediated tumor cell killing.
Cancer Gene Ther 10: 353-364.
32. Kagaya T, Nakamoto Y, Sakai Y, Tsuchiyama T, Yagita H, et al. (2006) Monocyte chemoattractant protein-1 gene delivery enhances antitumor effects of herpes simplex virus thymidine kinase/ganciclovir system in a model of colon cancer. Cancer Gene Ther 13: 357-366.
33. Ardiani A, Sanchez-Bonilla M, Black ME (2010) Fusion enzymes containing
HSV-1 thymidine kinase mutants and guanylate kinase enhance prodrug
sensitivity in vitro and in vivo. Cancer Gene Ther 17: 86-96.
34. Ren W, Strube R, Zhang X, Chen SY, Huang XF (2004) Potent tumor-specific immunity induced by an in vivo heat shock protein-suicide gene-based tumor vaccine. Cancer Res 64: 6645-6651.
35. Yamazaki M, Straus FH, Messina M, Robinson BG, Takeda T, et al. (2004)
Adenovirus-mediated tumor-specific combined gene therapy using Herpes
simplex virus thymidine/ganciclovir system and murine interleukin-12 induces effective antitumor activity against medullary thyroid carcinoma. Cancer Gene Ther 11: 8-15.
36. Ihle JN (1992) Interleukin-3 and hematopoiesis. Chem Immunol 51: 65-106.
37. Schrader JW (1986) The panspecific hemopoietin of activated T lymphocytes (interleukin-3). Annu Rev Immunol 4: 205-230.
38. Frendl G, Beller DI (1990) Regulation of macrophage activation by IL-3. I. IL-3 functions as a macrophage-activating factor with unique properties, inducing Ia and lymphocyte function-associated antigen-1 but not cytotoxicity. J Immunol 144: 3392-3399.
39. Pulaski BA, Yeh KY, Shastri N, Maltby KM, Penney DP, et al. (1996) Interleukin 3 enhances cytotoxic T lymphocyte development and class I major
histocompatibility complex "re-presentation" of exogenous antigen by tumor-infiltrating antigen-presenting cells. Proc Natl Acad Sci U S A 93: 3669-3674.
40. McBride WH, Economou JS, Syljuasen RG, Parrish C, Hackman D, et al. (1996) The effects of cytokine gene transfer into tumors on host cell infiltration and regression. Anticancer Res 16: 1139-1143.
41. Pulaski BA, McAdam AJ, Hutter EK, Biggar S, Lord EM, et al. (1993) Interleukin 3 enhances development of tumor-reactive cytotoxic cells by a CD4-dependent mechanism. Cancer Res 53: 2112-2117.
42. Chiang CS, Syljuasen RG, Hong JH, Wallis A, Dougherty GJ, et al. (1997) Effects of IL-3 gene expression on tumor response to irradiation in vitro and in vivo. Cancer Res 57: 3899-3903.
43. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, et al. (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120: 694-705.
44. Hong JH, Chiang CS, Campbell IL, Sun JR, Withers HR, et al. (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys 33: 619-626.
45. Tsai CH, Hong JH, Hsieh KF, Hsiao HW, Chuang WL, et al. (2006)
Tetracycline-regulated intratumoral expression of interleukin-3 enhances the
efficacy of radiation therapy for murine prostate cancer. Cancer Gene Ther 13:
1082-1092.
46. Saha B, Saini A, Germond R, Perrin PJ, Harlan DM, et al. (1999) Susceptibility or resistance to Leishmania infection is dictated by the macrophages evolved under the influence of IL-3 or GM-CSF. Eur J Immunol 29: 2319-2329.
47. Kuroda E, Ho V, Ruschmann J, Antignano F, Hamilton M, et al. (2009) SHIP
represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4
production from basophils. J Immunol 183: 3652-3660.
48. Stefani AL, Barzon L, Castagliuolo I, Guido M, Pacenti M, et al. (2005) Systemic efficacy of combined suicide/cytokine gene therapy in a murine model of hepatocellular carcinoma. J Hepatol 42: 728-735.
49. Zhang JH, Wan MX, Yuan JY, Pan BR (2004) Construction and identification of recombinant vectors carrying herpes simplex virus thymidine kinase and
cytokine genes expressed in gastric carcinoma cell line SGC7901. World J
Gastroenterol 10: 26-30.
50. Hanari N, Matsubara H, Hoshino I, Akutsu Y, Nishimori T, et al. (2007)
Combinatory gene therapy with electrotransfer of midkine promoter-HSV-TK
and interleukin-21. Anticancer Res 27: 2305-2310.
51. Frendl G, Fenton MJ, Beller DI (1990) Regulation of macrophage activation by IL-3. II. IL-3 and lipopolysaccharide act synergistically in the regulation of
IL-1 expression. J Immunol 144: 3400-3410.
52. Yeh KY, McAdam AJ, Pulaski BA, Shastri N, Frelinger JG, et al. (1998) IL-3
enhances both presentation of exogenous particulate antigen in association
with class I major histocompatibility antigen and generation of primary
tumor-specific cytolytic T lymphocytes. J Immunol 160: 5773-5780.
53. Lord EM, Yeh KY, Moran JA, Storozynsky E, Frelinger JG (1998) IL-3-mediated enhancement of particulate antigen presentation by macrophages. J
Immunother 21: 205-210.
54. Vile RG, Castleden S, Marshall J, Camplejohn R, Upton C, et al. (1997)
Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer 71: 267-274. 55. Vile RG, Nelson JA, Castleden S, Chong H, Hart IR (1994) Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res 54: 6228-6234.
56. Ramesh R, Marrogi AJ, Munshi A, Freeman SM (1998) Potentiation of the
bystander effect by immunization combined with suicide gene therapy. Adv
Exp Med Biol 451: 125-131.
57. Ramesh R, Munshi A, Abboud CN, Marrogi AJ, Freeman SM (1996) Expression of costimulatory molecules: B7 and ICAM up-regulation after treatment with a suicide gene. Cancer Gene Ther 3: 373-384.
58. Farias-Eisner R, Sherman MP, Aeberhard E, Chaudhuri G (1994) Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc Natl Acad Sci U S A 91: 9407-9411.
59. Nathan CF, Hibbs JB, Jr. (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3: 65-70.
60. Orucevic A, Bechberger J, Green AM, Shapiro RA, Billiar TR, et al. (1999)
Nitric-oxide production by murine mammary adenocarcinoma cells promotes
tumor-cell invasiveness. Int J Cancer 81: 889-896.
61. American Brain Tumor Association Statistic Report.
http://www.abta.org/news/brain-tumor-fact-sheets/.
62. Davis FG, Freels S, Grutsch J, Barlas S, Brem S (1998) Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973-1991. J Neurosurg 88: 1-10.
63. Davis FG, McCarthy BJ, Berger MS (1999) Centralized databases available for describing primary brain tumor incidence, survival, and treatment: Central Brain Tumor Registry of the United States; Surveillance, Epidemiology, and End Results; and National Cancer Data Base. Neuro Oncol 1: 205-211.
64. Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, et al. (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17: 2572-2578.
65. Ballman KV, Buckner JC, Brown PD, Giannini C, Flynn PJ, et al. (2007) The
relationship between six-month progression-free survival and 12-month
overall survival end points for phase II trials in patients with glioblastoma
multiforme. Neuro Oncol 9: 29-38.
66. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, et al. (2009)
Effects of radiotherapy with concomitant and adjuvant temozolomide versus
radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459-466.
67. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:
1624-1636.
68. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161-174.
69. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of
proteases. Nat Rev Cancer 3: 489-501.
70. Stetler-Stevenson WG (1990) Type IV collagenases in tumor invasion and
metastasis. Cancer Metastasis Rev 9: 289-303.
71. Ray JM, Stetler-Stevenson WG (1994) The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur Respir J 7: 2062-2072.
72. Rosenberg GA (1995) Matrix metalloproteinases in brain injury. J Neurotrauma 12: 833-842.
73. Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, et al. (2005)
Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1
metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of
human glioma. Am J Pathol 166: 877-890.
74. Coussens LM, Werb Z (1996) Matrix metalloproteinases and the development of cancer. Chem Biol 3: 895-904.
75. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, et al. (1999)
Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix
metalloproteinase-1 (MT1-MMP) are involved in different aspects of the
pathophysiology of malignant gliomas. Br J Cancer 79: 1828-1835.
76. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, et al. (1996) Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis 14: 35-42.
77. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, et al. (1995)
Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation
of the activated form of the membrane metalloprotease. J Biol Chem 270:
5331-5338.
78. Morrison CJ, Butler GS, Bigg HF, Roberts CR, Soloway PD, et al. (2001) Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a
TIMP-2-independent pathway. J Biol Chem 276: 47402-47410.
79. Deryugina EI, Luo GX, Reisfeld RA, Bourdon MA, Strongin A (1997) Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res 17: 3201-3210.
80. Ahonen M, Baker AH, Kahari VM (1998) Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res 58: 2310-2315.
81. Ala-Aho R, Johansson N, Baker AH, Kahari VM (2002) Expression of
collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080
cells. Int J Cancer 97: 283-289.
82. Belien AT, Paganetti PA, Schwab ME (1999) Membrane-type 1 matrix
metalloprotease (MT1-MMP) enables invasive migration of glioma cells in
central nervous system white matter. J Cell Biol 144: 373-384.
83. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, et al. (1997) Matrix
metalloproteinase stromelysin-1 triggers a cascade of molecular alterations
that leads to stable epithelial-to-mesenchymal conversion and a premalignant
phenotype in mammary epithelial cells. J Cell Biol 139: 1861-1872.
84. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, et al. (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58: 1048-1051.
85. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, et al. (2000) Matrix
metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci U S A 97: 3884-3889.
86. McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, et al. (2000) Inflammation dampened by gelatinase A cleavage of monocyte
chemoattractant protein-3. Science 289: 1202-1206.
87. Wang SC, Hong JH, Hsueh C, Chiang CS (2012) Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine
astrocytoma model. Lab Invest 92: 151-162.
88. Mosig RA, Dowling O, DiFeo A, Ramirez MC, Parker IC, et al. (2007) Loss of MMP-2 disrupts skeletal and craniofacial development and results in
decreased bone mineralization, joint erosion and defects in osteoblast and
osteoclast growth. Hum Mol Genet 16: 1113-1123.
89. Droppelmann CA, Gutierrez J, Vial C, Brandan E (2009) Matrix
metalloproteinase-2-deficient fibroblasts exhibit an alteration in the fibrotic
response to connective tissue growth factor/CCN2 because of an increase in
the levels of endogenous fibronectin. J Biol Chem 284: 13551-13561.
90. Gerg M, Kopitz C, Schaten S, Tschukes A, Kahlert C, et al. (2008) Distinct
functionality of tumor cell-derived gelatinases during formation of liver
metastases. Mol Cancer Res 6: 341-351.
91. Chiang CS, McBride WH, Withers HR (1993) Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol 29: 60-68.
92. Chiang CS, Hong JH, Stalder A, Sun JR, Withers HR, et al. (1997) Delayed
molecular responses to brain irradiation. Int J Radiat Biol 72: 45-53.
93. Furudoi A, Tanaka S, Haruma K, Yoshihara M, Sumii K, et al. (2001) Clinical significance of human erythrocyte glucose transporter 1 expression at the deepest invasive site of advanced colorectal carcinoma. Oncology 60:
162-169.
94. Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R (1995) GLUT1
expression in human breast carcinoma: correlation with known prognostic
markers. Anticancer Res 15: 2895-2898.
95. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, et al. (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73: 1524-1535.
96. Bauer H, Sonnleitner U, Lametschwandtner A, Steiner M, Adam H, et al. (1995) Ontogenic expression of the erythroid-type glucose transporter (Glut 1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. Brain Res Dev Brain Res 86: 317-325.
97. Pardridge WM, Boado RJ, Farrell CR (1990) Brain-type glucose transporter
(GLUT-1) is selectively localized to the blood-brain barrier. Studies with
quantitative western blotting and in situ hybridization. J Biol Chem 265:
18035-18040.
98. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, et al. (1998)
MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and
apoptosis of hypertrophic chondrocytes. Cell 93: 411-422.
99. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, et al. (2000) Impaired
endochondral ossification and angiogenesis in mice deficient in
membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97:4052-4057.
100. Jaalinoja J, Herva R, Korpela M, Hoyhtya M, Turpeenniemi-Hujanen T (2000) Matrix metalloproteinase 2 (MMP-2) immunoreactive protein is associated with poor grade and survival in brain neoplasms. J Neurooncol 46: 81-90.
101. Komatsu K, Nakanishi Y, Nemoto N, Hori T, Sawada T, et al. (2004) Expression and quantitative analysis of matrix metalloproteinase-2 and -9 in human gliomas. Brain Tumor Pathol 21: 105-112.
102. Wang M, Wang T, Liu S, Yoshida D, Teramoto A (2003) The expression of
matrix metalloproteinase-2 and -9 in human gliomas of different pathological
grades. Brain Tumor Pathol 20: 65-72.
103. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 13: 534-540.
104. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, et al. (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20: 379-387.
105. Schornack PA, Gillies RJ (2003) Contributions of cell metabolism and H+
diffusion to the acidic pH of tumors. Neoplasia 5: 135-145.
106. Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for
TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res
Tech 52: 401-410.
107. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, et al. (1998) An essential role for ectodomain shedding in mammalian development. Science 282: 1281-1284.
108. Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481-490.
109. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, et al. (2000) Matrix
metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737-744.
110. Gatto C, Rieppi M, Borsotti P, Innocenti S, Ceruti R, et al. (1999) BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin Cancer Res 5: 3603-3607.
111. Martin DC, Sanchez-Sweatman OH, Ho AT, Inderdeo DS, Tsao MS, et al. (1999) Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced
hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor
angiogenesis. Lab Invest 79: 225-234.
112. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, et al. (2001) The
membrane-anchored MMP inhibitor RECK is a key regulator of extracellular
matrix integrity and angiogenesis. Cell 107: 789-800.
113. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, et al. (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular
endothelial growth factor. Proc Natl Acad Sci U S A 98: 12485-12490.
114. Polette M, Gilbert N, Stas I, Nawrocki B, Noel A, et al. (1994) Gelatinase A
expression and localization in human breast cancers. An in situ hybridization
study and immunohistochemical detection using confocal microscopy.
Virchows Arch 424: 641-645.
115. Du R, Petritsch C, Lu K, Liu P, Haller A, et al. (2008) Matrix
metalloproteinase-2 regulates vascular patterning and growth affecting tumor
cell survival and invasion in GBM. Neuro Oncol 10: 254-264.
116. Du R, Lu KV, Petritsch C, Liu P, Ganss R, et al. (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate
tumor angiogenesis and invasion. Cancer Cell 13: 206-220.
117. Chen FH, Fu SY, Yang YC, Wang CC, Chiang CS, et al. (2013) Combination of Vessel-Targeting Agents and Fractionated Radiation Therapy: The Role of the SDF-1/CXCR4 Pathway. Int J Radiat Oncol Biol Phys 86: 777-784.