簡易檢索 / 詳目顯示

研究生: 吳亭穎
Wu, Ting-Ying
論文名稱: Optimal Design and Iterative Learning of an Energy-Efficient Biped Walking in Semi-Active Manner
以半主動式行走的省能雙足機器人之最佳化設計與疊代學習
指導教授: 葉廷仁
Yeh, Ting-Jen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 127
中文關鍵詞: 半主動非線性最佳化疊代學習雙足機器人被動式雙足機器人
外文關鍵詞: Semi-Activeness, Nonlinear Optimization, Iterative Learning, Bipedal Robot, Passive Biped
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, a biped which combines the merits of both powered and passive bipeds is proposed to walk in semi-active manner. The semi-activeness is motivated by Tai-Chi, the ancient Chinese martial art, in which the practitioner has to learn to actuate only part of his/her muscles to control the body posture and relax the others. Likewise, for the proposed biped, during most of a walking cycle, only half of the joints are actuated to follow specific trajectories, and the other half remain unactuated but have passive springs connected between adjacent links. It is expected that by having unactuated joints, the biped can preserve the power saving feature of the passive biped, and by having actuated joints under active control, the biped can also achieve the stability and performance of the powered biped.
    To devise a systematic design methodology for the biped, its dynamics as well as the walking constraints are carefully studied. Furthermore, an optimization procedure is also proposed to compute the optimal trajectories for the actuated joints and spring constants which can lead to minimum energy consumption. The feasibility of the proposed biped, including the system design and the control strategy, is verified by numerical simulations and hardware implementation. Experiments indicate that the biped walking in the semi-active manner consumes 80% less the electrical power of the fully-powered biped that performs the same gait and is more energy-efficient than several state-of-the-art bipeds.
    Due to experimental effects such as unmodelled dynamics, measurement noise, and so on, the optimized actuation trajectories are still relied on trial-and-error tuning to make the biped achieve satisfactory walking performance. An iterative learning strategy is thus proposed to provide further experimental tuning on the actuated joint trajectories computed by the model-based optimization procedure. The strategy demands the biped to swing its leg repeatedly, and during each swinging the hip trajectory is iteratively modified by a learning law to minimize foot scuffing of the swing leg and yet keep the associated foot clearance to within a small limit for reducing power consumption. Experiments show that the learning strategy leads to a convergent hip trajectory after 11 iterations. Besides, when the trajectory is adopted for actual walking, the biped demonstrates a good balance between power efficiency and robustness to ground conditions.


    List of Figures vii List of Tables ix 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Scope and Contents of the Thesis . . . . . . . . . . . 8 2 The Walking Strategy for a Biped 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . 10 2.2 Biomechanical Analysis . . . . . . . . . . . . . . . 11 2.2.1 Analysis forMuscleActivation . . . . . . . . . . . 11 2.2.2 Analysis for aHumanGait . . . . . . . . . . . . . . 12 2.2.3 Causes of InefficientMovement . . . . . . . . . . . 14 2.3 Walking Schemes for aWalking Biped . . . . . . . . . 16 2.3.1 EnergyAnalysis of Bipedal Locomotion . . . . . . . 16 2.3.2 Three Schemes for BipedalWalking . . . . . . . . . 17 2.4 Summary and Remarks . . . . . . . . . . . . . . . . . 18 3 The Biped Walking in Semi-Active Manner 20 3.1 Introduction . . . . . . . . . . . . . . . . . . . . 20 3.2 Dynamics for the BipedWalking in Semi-ActiveManner . 21 3.2.1 The BipedWalking in Semi-ActiveManner . . . . . . . 21 3.2.2 DynamicModels for theWalking Biped. . . . . . . . . 22 3.3 Constraints for Achieving Stable, Periodical, Semi-Active Walking . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Summary and Remarks . . . . . . . . . . . . . . . . . 29 4 An Optimization Procedure for Determining Optimal Joint Trajectories and Spring Constants 30 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 30 4.2 AFormulation for theOptimization Problem. . . . . . . 31 4.3 AFramework of theOptimization Procedure . . . . . . . 33 4.4 Summary and Remarks . . . . . . . . . . . . . . . . . 35 5 Simulations for the Optimization Procedure 38 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 38 5.2 Simulation Parameter Settings . . . . . . . . . . . . 38 5.3 Improvement for Energy Consumption with Composite Springs . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4 Simulation Results andDiscussions . . . . . . . . . . 41 5.5 Summary and Remarks . . . . . . . . . . . . . . . . . 44 6 Hardware Implementation and Experimental Results 46 6.1 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . 46 6.2 Experiments for the Semi-ActiveWalkingMotion . . . . 47 6.3 Experimental Power Analysis . . . . . . . . . . . . . 50 6.4 FurtherDiscussion on the Swing-Foot Clearance . . . . 54 7 An Experimental Iterative Learning Strategy 56 7.1 Introduction . . . . . . . . . . . . . . . . . . . . 56 7.2 ABasic Concept of an Iterative Learning Strategy . . 57 7.3 AFramework of the Iterative Learning Strategy . . . . 58 7.3.1 ALearning Law . . . . . . . . . . . . . . . . . . . 58 7.3.2 ASmoothApproximationAlgorithm . . . . . . . . . . . 60 7.4 Hardware Implementation and Experimental Results . . 61 7.4.1 Experimental Procedure and Results . . . . . . . . 62 7.4.2 Discussion on Effectiveness of the Learning Strategy . . . . . 65 7.4.3 Discussion on Convergent Rate of the Learning Algorithm . 67 7.5 Summary and Remarks . . . . . . . . . . . . . . . . . 68 8 Conclusions and Recommendations 69 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 69 8.2 Recommendations for FutureWork . . . . . . . . . . . . . . . . . . 71 A Dynamic Equations of the Biped 73 B MATLAB Programs 93 Bibliography 121

    [1] R. M. Alexander, “Three uses for springs in legged locomotion,” Int. J. Robot. Res., 9(2): 53—61, 1990.
    [2] R. M. Alexander, “Energy-Saving Mechanisms in Walking and Running,” J. Exp. Biol., 160: 55—69, 1991.
    [3] G. Bessonnet, S. Chesse and P. Sardain, “Optimal Gait Synthesis of a Seven-Link Planar Biped,” Int. J. Robot. Res., 23(10—11): 1059—1073, 2004.
    [4] G. Bessonnet, P. Seguin and P. Sardain, “A Parametric Optimization Approach to Walking Pattern Synthesis,” Int. J. Robot. Res., 24(7): 523—536, 2005.
    [5] Y. Blanc, C. Balmer, T. Landis and F. Vingerhoets, “Temporal Parameters and Pattern of Foot Roll over during Walking: Normative Data for Healthy Adults,” Gait and Posture, 10: 97—108, 1999.
    [6] Carl de Boor, A Practical Guide to Splines, New York, Springer, 2001.
    [7] P. H. Channon, S. H. Hopkins and D. T. Pham, “Derivation of Optimal Walking Motions for a Bipedal Walking Robot,” Robotica, 10(2): 165—172, 1992.
    [8] C. Chevallereau and Y. Aoustin, “Optimal reference trajectories for walking and running of biped robot,” Robotica, 19(5): 557—569, 2001.
    [9] T. F. Coleman and Yin. Zhang, Optimization Toolbox for use with MATLAB (Version 2006b), The MathWorks, Inc., 2006.
    [10] S. H. Collins, M. Wisse and A. Ruina, “A Three-Dimensional Passive Dynamic Walking Robot with Two Legs and Knees,” Int. J. Robot. Res., 20(7): 607—615, 2001.
    [11] S. H. Collins and A. Ruina, “A Bipedal Walking Robot with Efficient and Human-Like Gait,” Proceedings of the IEEE International Conference on Robotics and Automation,
    Barcelona, Spain, pp. 1983—1988, 2005.
    [12] S. H. Collins, A. Ruina, R. Tedrake and M. Wisse, “Efficient Bipedal Robots Based on Passive-Dynamic Walkers,” Science 307(5712): 1082—1085, 2005.
    [13] D. Djoudi, C. Chevallereau and Y. Aoustin, “Optimal Reference Motions for Walking of a Biped Robot,” Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2002—2007, 2005.
    [14] J. M. Donelana, R. Krama and A. D. Kuo, “Simultaneous Positive and Negative External Mechanical Work in Human Walking,” J. Biomech., 35: 117—124, 2002.
    [15] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi and G. Cheng, “Learning CPG-Based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot,”
    Int. J. Robot. Res., 27(2): 213—228, 2008.
    [16] P.-E. Gill, W. Murray and M.-H. Wright, Practical Optimization, New York, Academic Press, 1981.
    [17] A. Goswami, “Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point,” Int. J. Robot. Res., 18(6): 523—533, 1999.
    [18] A. V. Hill, “The Heat of Shortening and the Dynamic Constants of Muscle,” Proceedings of the Royal Society of London., 126, pp. 136—195, 1938.
    [19] A. V. Hill, “Production and Absorption of Work by Muscle,” Science, 131: 897—903, 1960.
    [20] K. Hirai, M. Hirose, Y. Haikawa and T. Takenaka, “The Development of Honda Humanoid Robot,” Proceedings of the IEEE International Conference on Robotics and Automation,
    Leuven, Belgium, pp. 1321—1326, 1998.
    [21] Honda Motors Co. http://world.honda.com/ASIMO/ , 2009.
    [22] Q. Huang, T. Hase and K. Ono, “Passive/Active Unified Dynamic Walking for Biped Locomotion,” Proceedings of the IEEE International Conference on Robotics and Biomimetics,
    Sanya, China, pp. 964—971, 2007.
    [23] Q. Huang, T. Hase and K. Ono, “Optimal Trajectory Planning Method Using Inequality State Constraint for a Biped Walking Robot with Upper Body Mass,” Journal of System Design and Dynamics, 1(2): 168—178, 2007.
    [24] A. Imadu and K. Ono, “Optimum trajectory planning method for a system that includes passive joints (Proposal of a Function Approximation Method),” JSME Int. J., 42C(2):
    309—315, 1999.
    [25] V. T. Inman, H. J. Ralston and F. Todd, Human Walking. Williams & Wilkins, Baltimore, 1981.
    [26] T. Y. Kuc, S. M. Baek, H. G. Lee and J. O. Kim, “Fourier Series Learning of Biped Walking Motion,” Proceedings of the IEEE International Symposium on Intelligent Control, Vancouver, Canada, pp.49—54, 2002.
    [27] A. D. Kuo, “Energetics of actively powered locomotion using the simplest walking model,” J. Biomech. Eng., 124 (1): 113—120, 2002.
    [28] T. McGeer, “Passive Dynamic Walking,” Int. J. Robot. Res., 9(2): 62—82, 1990.
    [29] T. McGeer, “Passive walking with knees,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 1640—1645, 1990.
    [30] J. Morimoto, G. Cheng, C. G. Atkeson and G. Zeglin, “A Simple Reinforcement Learning Algorithm For Biped Walking,” Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 3030—3035, 2004.
    [31] J. Morimoto and C. G. Atkeson, “Learning Biped Locomotion,” IEEE Robot. Autom. Mag., 14(2): 41—51, 2007.
    [32] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal and M. Kawato, “A Framework for Learning Biped Locomotion with Dynamic Movement Primitive,” IEEE-RAS/RSJ International Conference on Humanoid Robots, pp. 925—940, 2004.
    [33] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal and M. Kawato, “Learning from Demonstration and Adaptation of Biped Locomotion,” Robot. Auton. Syst., 47(2): 79—91, 2004.
    [34] K. Ono, T. Furuichi and R. Takahashi, “Self-Excited Walking of a Biped Mechanism with Feet,” Int. J. Robot. Res., 23(1): 55—68, 2004.
    [35] K. Ono and R. Q. Liu, “Optimal Biped Walking Locomotion Solved by Trajectory Planning Method,” ASME J. Dyn. Syst. Meas. Control, 124(4): 554—565, 2002.
    [36] K. Ono, R. Takahashi and T. Shimada, “Self-Excited Walking of a Biped Mechanism,” Int. J. Robot. Res., 20(12): 953—966, 2001.
    [37] J. Pratt, “Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots,” Ph.D. Thesis, Massachusetts Institute of Technology, Computer Science Department, USA, 2000.
    [38] D. F. Roger, An Introduction to NURBS with Historical Perspective, Morgan Kaufmann Publishers, 2001.
    [39] M. Rostami and G. Bessonnet, “Sagittal Gait of a Biped Robot During the Single Support Phase. Part 2: Optimal Motion,” Robotica, 19(5): 241—253, 2001.
    [40] T. Saidouni and G. Bessonnet, “Generating Globally Optimised Sagittal Gait Cycles of a Biped Robot,” Robotica, 21(2): 199—210, 2003.
    [41] V. Sangwan and S. K. Agrawal, “Leg-Like Motion with an Under-Actuated two DOF Linkage Using Differential Flatness,” Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, pp. 1790—1795, 2006.
    [42] V. Sangwan and S. K. Agrawal, “Differentially Flat Design of Bipeds Ensuring Limit-Cycles,” Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 3585—3590, 2007.
    [43] V. Sangwan, H. Kuebler and S. K. Agrawal, “Differentially flat design of under-actuated planar robots: Experimental results,” Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA. USA, pp. 2423—2428, 2008.
    [44] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Cambridge, MA: MIT Press, 1998.
    [45] A. Takanishi, L. Hun-ok, M. Tsuda and I. Kato, “Realization of Dynamic Biped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface,” Proceedings of the IEEE International Workshop on Intelligent Robots and Systems, pp. 323—330, 1990.
    [46] R. Tedrake, T. W. Zhang, M.-F. Fong and H. S. Seung, “Actuating a simple 3D passive dynamic walker,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4656—4661, New Orleans, LA, 2004.
    [47] R. Tedrake, T. W. Zhang, and H. S. Seung, “Stochastic Policy Gradient Reinforcement Learning on a Simple 3D Biped,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 2849—2854, 2004.
    [48] R. Tedrake, T. W. Zhang, and H. S. Seung, “Learning to walk in 20 minutes,” Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, CT, 2005.
    [49] R. Q. Van der Linde, “Design, Analysis, and Control of a Low Power Joint for Walking Robots by Phasic Activation of McKibben Muscles,” IEEE Trans. Robot. Autom., 15(4): 599—604, 1999.
    [50] M. Vukobratovié and B. Borovac, “Zero-Moment Point — Thirty Five Years of Its Life,” Int. J. Human. Robot., 1(1): 157—173, 2004.
    [51] E. R. Westervelt, G. Buche, and J. W. Grizzle, “Experimental Validation of a Framework for the Design of Controllers That Induce Stable Walking in Planar Bipeds,” Int. J. Robot. Res., 24(6): 55—68, 2004.
    [52] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion, New York: Taylor and Francis and Boca
    Raton FL: CRC Press, 2007.
    [53] D. A. Winter, Biomechanics and Motor Control of Human Movement-2nd ed. John Wiley & Sons, Inc., Hoboken, New Jersey. 1989.
    [54] T.-Y.Wu and T.-J. Yeh, “Optimal Design and Implementation of an Energy-Efficient Biped Walking in Semi-Active Manner,” Robotica, accepted for publication. A condensed version of the paper is also presented in Proceedings of the IEEE International Conference on
    Robotics and Automation, Pasadena, CA. USA, pp. 1252—1257, 2008.
    [55] T.-Y.Wu and T.-J. Yeh, “An Experimental Iterative Learning Strategy for a Biped Performing Semi-Active Walking,” Robotica, submitted for publication. A condensed version of the paper is also presented in Proceedings of the 4th International Conference on Autonomous
    Robots and Agents, Wellington, New Zealand, pp. 420—425, 2009.
    [56] J. Yamaguchi, A. Takanishi and I. Kato, “Development of a Biped Walking Robot Compensating for Three-Axis Moment by Trunk Motion,” Proceedings of the IEEE International
    Workshop on Intelligent Robots and Systems, pp. 561—566, 1993.
    [57] J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi, “Development of a Bipedal Humanoid Robot Control Method of Whole Body Cooperative Dynamic Biped Walking,” Proceedings
    of the IEEE International Conference on Robotics and Automation, pp. 361—367, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE