簡易檢索 / 詳目顯示

研究生: 周品宏
Jhou, Pin-Hong
論文名稱: 機場微電網之開發及其與電網/電動車/飛機之互聯操作
DEVELOPMENT OF AIRPORT MICROGRID AND ITS INCORPORATED OPERATIONS TO GRID, ELECTRIC VEHICLE AND AIRCRAFT
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 徐國鎧
Shyu, Kuo-Kai
陳盛基
Chen, Seng-Chi
黃智方
HUANG, CHIH-FANG
張淵智
Chang, Yuan-Chih
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 213
中文關鍵詞: 機場微電網太陽光伏燃料電池單週期控制電池飛輪垂降控制電動車多電氣化飛機地面電源裝置開關式磁阻馬達風力發電機最大功率追蹤切換式整流器
外文關鍵詞: Airport microgrid, photovoltaic, fuel cell, one-cycle control, battery, flywheel, droop control, electric vehicle, more electric aircraft, ground power unit, switched-reluctance motor, wind generator, MPPA, SMR
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發機場雙極性直流微電網及從事其與電網、電動車及多電飛機之互聯操作。微電網之共通直流鏈電壓由光伏及燃料電池經由單向三階升壓轉換器建立,由所提電流單周期控制及電壓強健控制,獲得良好之電壓動態響應。並提出光伏最大功率追蹤及燃料電池能源支撐方法,施行兩輸入電源之能源協調操作。為增進微電網之供電可靠性,構裝含電池及飛輪之混合儲能系統,兩者經由各自之三階雙向介面轉換器接至共同直流匯流排,由所提垂降控制策略獲得良好之能源支撐充放電特性。當系統能源過剩時,利用所構裝之傾卸切換電阻負載,防止直流匯流排之過壓。
    所建微電網與電網間之互聯操作,係以中性點箝位三階三相變頻器為之。除從電網至微電網之電能支撐外,微電網亦可傳送預設之電能至電網。更且,微電網至電動車與電動車至微電網之雙向互聯操作亦可施行,所有互聯操作亦應用垂降控制。對於降落的飛機,也可進行雙向之微電網至飛機及飛機至微電網操作。所開發之微電網可具飛機地面電源裝置之功能,多電飛機上之設施可由微電網供電,包括115V/400Hz交流匯流排、270V直流匯流排及開關式磁阻馬達驅動系統等。
    出於安全考量,光伏較適用為機場微電網之再生能源,但風力發電機於無地形限制之特定機場亦可採用。為提升風力發電機之發電特性,並增進其應用潛力,本論文進一步開發一強健無位置感測風力內置磁石式永磁同步發電機,結合風機之最大功率追蹤控制及發電機之最大功率每安培控制,改善發電效率。後接於永磁同步發電機之維也納開關式整流器,由所提修正式單週期控制機構,消除固有之電流失真,獲得穩定之自動換相角移位,提高發電特性。於所提強健無位置感測控制機構,應用頻率篩選技術,降低高頻雜訊之影響,提高轉子位置之估測準確度,優化風力永磁同步發電機效率。所建以風力發電機為主之微電網,以實測評定其操作特性,而具光伏及風力發電機機場微電網之操控將評述及建議之。


    This dissertation presents the development of an airport bipolar DC microgrid and its interconnected operations with utility grid, electric vehicle (EV) and more electric aircraft (MEA). The microgrid DC-bus voltage is established by the main sources with photovoltaic (PV) and fuel cell (FC) via unidirectional three-level (3L) boost converters. The one-cycle control (OCC) based current control scheme, quantitative and robust voltage control scheme are proposed to yield satisfactory voltage dynamic response. Moreover, the PV maximum power point tracking (MPPT) with FC energy supporting approach is developed. The equipped hybrid energy storage system (HESS) consists of energy-type battery and power-type flywheel. Each device is interfaced to the common DC bus via its own 3L bidirectional interface converter. The energy coordinated operation is achieved by the proposed droop control scheme. A dump load leg is added to avoid the overvoltage due to energy surplus.
    The grid-connected energy complementary operation is conducted using a neutral point clamped (NPC) 3L three-phase inverter. In addition to the energy support from grid-to-microgrid (G2M), the reverse microgrid-to-grid (M2G) operation is also conductible. Moreover, the microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) bidirectional operations can also be applicable. The droop control is also applied to perform these interconnected operations. For the grounded aircraft, its bidirectional microgrid-to-airport (M2A)/airport-to-microgrid (A2M) operations to microgrid can be performed. The aircraft ground power unit (GPU) function is preserved by the developed microgrid. The MEA on-board facilities can be powered by the microgrid, including 115V/400Hz AC bus, 270V DC bus, and the switched-reluctance motor (SRM) drive, etc.
    Although PV is more adequate to be the airport microgrid renewable source due to the safety reason, wind generator can also be applicable for some specific airports without terrain limitation. To improve the generating performance of a wind generator and increase its application potential, this dissertation further develops a robust position sensorless wind IPMSG. It incorporates MPPT for wind energy extraction and maximum power per ampere (MPPA) control for IPMSG. The IPMSG followed Vienna switch-mode rectifier (SMR) applies modified OCC scheme to yield stable MPPA. The inherent current distortion is eliminated to allow flexible commutation angle shifting. Additionally, a robust position sensorless control scheme is developed. A frequency-screening technique is proposed to improve the rotor position estimation performance amid noise effects and optimize the wind IPMSG efficiency. The established wind generator based microgrid is experimentally evaluated. And the operation control of airport microgrid with PV and wind generator will be commented and suggested.

    ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES vii LIST OF TABLES xx LIST OF ABBREVIATIONS xxix CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Survey 2 1.2.1 Microgrids 2 1.2.2 Interface DC/DC Converter 3 1.2.3 PWM Inverter 4 1.2.4 Energy Storage Systems 5 1.2.5 Movable Energy Storage 6 1.2.6 Electric Machines 6 1.2.7 More Electric Aircraft 7 1.3 Contribution of this Dissertation 7 1.4 Organization of this Dissertation 9 CHAPTER 2 EXPLORATION OF RELATED TECHNOLOGIES 12 2.1 Introduction 12 2.2 Microgrid Systems 12 2.2.1 Types of Microgrid 12 2.2.2 Controls of Microgrid 15 2.2.3 Voltage Level Consideration for DC Microgrid 16 2.3 Renewable and Distributed Sources 17 2.3.1 Wind Energy Conversion System 17 2.3.2 Governing Equations 17 2.3.3 Some Wind Generator Systems 18 2.4 Energy Storage Devices 19 2.4.1 Battery 19 2.4.2 Flywheel 21 2.4.3 Supercapacitor 24 2.5 Interface Converters 24 2.5.1 DC-DC Converters 24 2.5.2 Switch-mode Rectifiers and Inverters 27 2.6 Electric Machines 30 2.6.1 Synchronous Machine 30 2.6.2 Switched-Reluctance Machine 39 CHAPTER 3 THE ESTABLISHED AIRPORT MICROGRID 41 3.1 Introduction 41 3.2 PV and FC Powered Bipolar DC Microgrid 42 3.2.1 Renewable and Distributed Energy Sources 42 3.2.2 Three-level Boost Converter 46 3.2.3 Interleaved Three-level Boost Converter 57 3.2.4 DC Microgrid with Integrated PV and FC Sources 68 3.3 Grid-connected inverter 72 3.3.1 Single-phase Three-wire Load Inverter 72 3.3.2 Three-phase Three-wire Load Inverter 88 3.3.3 M2G/G2M Operations via 3P3W Inverter 97 3.3.4 Grid-Connected Operation via Three-level NPC Inverter 102 3.4 Energy storage system 108 3.4.1 Energy Storage Devices 108 3.4.2 Battery Energy Storage System 110 3.4.3 Flywheel Energy Storage System 118 3.4.4 The Proposed Droop Control Method 127 CHAPTER 4 INTEGRATED OPERATION OF EV 130 4.1 Introduction 130 4.2 System Configuration 130 4.3 CLLC Resonant DC/DC Converter 131 4.3.1 Voltage Transfer Characteristics 132 4.3.2 Circuit Operations 134 4.3.3 Design of System Components 139 4.3.4 Control Strategy 144 4.3.5 Measured Results 144 4.4 EV Integrated Operation with Airport Microgrid 147 4.4.1 EV Battery System 147 4.4.2 Measured Results 149 CHAPTER 5 INTEGRATED OPERATION OF MEA 153 5.1 Introduction 153 5.2 System Configuration 153 5.2.1 270Vdc Converter 154 5.2.2 115V/400Hz High-Frequency Inverter 156 5.2.3 Switched-Reluctance Motor Drive 158 5.3 Experimental Evaluation of the MEA 161 5.3.1 MEA Major AC Bus and DC Bus 161 5.3.2 SRM Drive 163 CHAPTER 6 A ROBUST SENSORLESS WIND INTERIOR PERMANENT-MAGNET SYNCHROUS GENERATOR 166 6.1 Introduction 166 6.2 System Configuration 166 6.3 IPMSG with the proposed OCC Vienna SMR 168 6.3.1 Basics of IPMSG 168 6.3.2 Three-phase Vienna Boost SMR 168 6.3.3 Circuit Components 172 6.3.4 The Proposed Commutation Shifting Scheme for IPMSG Followed by OCC Vienna SMR 173 6.3.5 The Proposed Current Distortion Elimination Scheme 174 6.3.6 IPMSG Maximum Power Per Ampere (MPPA) Control 176 6.3.7 Voltage Control Scheme 178 6.4 The Developed Position Sensorless IPMSG 183 6.4.1 The Proposed Robust PLL Position Sensorless Control Scheme 183 6.4.2 Control Methodology 183 6.4.3 The Proposed Robust Position Error Cancellation Controller (RPECC) 183 6.4.4 Experimental Evaluation 186 6.5 The Developed Robust Sensorless Wind Generator with MPPT 187 6.5.1 Wind Turbine Emulator 187 6.5.2 MPPT Operation 188 6.5.3 Experimental Evaluation 188 6.6 Evaluation of the Wind IPMSG Based Microgrid 192 6.6.1 Wind IPMSG under Constant Voltage Mode 193 6.6.2 Wind PMSG under MPPT Mode 194 6.7 Airport Microgrid with Wind Generator 197 CHAPTER 7 CONCLUSIONS 198 REFERENCES 200 BIOGRAPHICAL NOTE 213

    REFERENCES
    A. Microgrids
    [1] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, May 2013.
    [2] S. Mirsaeidi, X. Dong, S. Shi, and D. Tzelepis, “Challenges, advances and future directions in protection of hybrid AC/DC microgrids,” IET Renew. Power Gener., vol. 11, no. 12, pp. 1495-1502, 2017.
    [3] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. 12th Int. Conf. Optim. Elect. Electron. Equip., 2010, pp. 1369-1380.
    [4] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, Sep. 2011.
    [5] M. Patterson, N. F. Macia, and A. M. Kannan, “Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 359-366, Mar. 2015.
    [6] P. A. Madduri, J. Poon, J. Rosa, M. Podolsky, E. A. Brewer, and S. R. Sanders, “Scalable DC microgrids for rural electrification in emerging regions,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 4, pp. 1195-1205, Dec. 2016.
    [7] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, Jan./Feb. 2017.
    [8] A. Merabet, K. T. Ahmed, H. Ibrahim, R. Beguenane, and A. M. Y. Ghias, “Energy management and control system for laboratory scale microgrid based wind-PV-battery,” IEEE Trans. Sustain. Energy, vol.8, no. 1, pp. 145-154, Jan. 2017.
    [9] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids- Part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
    [10] Z. Jin, G. Sulligoi, R. Cuzner, L. Meng, J. C. Vasquez and J. M. Guerrero, “Next-generation shipboard DC power system: introduction smart grid and dc microgrid technologies into maritime electrical networks,” IEEE Electrification Magazine, vol. 4, no. 2, pp. 45-57, June 2016.
    [11] M. Abul Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid- system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157- 171, Mar. 2018.
    [12] A. Matsumoto, A. Fukui, T. Takeda, and M. Yamasaki, “Development of 400-Vdc output rectifier for 400-Vdc power distribution system in telecom sites and data centers,” in Proc. 2010 IEEE INTELEC, Orlando, FL, USA, June 2010.
    [13] A. D. Martin, J. M. Cano, J. F. A. Silva, and J. R. Vázquez, “Backstepping control of smart grid-connected distributed photovoltaic power supplies for telecom equipment,” IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1496-1504, Dec. 2015.
    [14] K. Hirose, “DC microgrid for telecommunications service and related application,” in Proc. 2018 IPEC-Niigata 2018-ECCE Asia, Niigata, Japan, May 2018, pp. 593-597.
    [15] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON, 2010, pp. 3034-3039.
    [16] G. AlLee and W. Tschudi, “Edison redux: 380 Vdc brings reliability and efficiency to sustainable data centers,” in IEEE Power and Energy Magazine, vol. 10, no. 6, pp. 50-59, Nov.-Dec. 2012.
    [17] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
    [18] J. Y. Lee, Y. P. Cho, and J. H. Jung, “Single-stage voltage balancer with high-frequency isolation for bipolar LVDC distribution system,” IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3596-3606, May 2020.
    [19] T. Dragičević, X. N. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids-Part I: a review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7 , pp. 4876-4891, July 2016.
    [20] X. N. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, “An improved droop control method for DC microgrids based on low bandwidth communication with DC bust voltage restoration and enhanced current sharing accuracy,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1800- 1812, Apr. 2014.
    [21] T. Dragičević, J. M. Guerrero, J. C. Vasquez, and D. Škrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, Feb. 2014.
    [22] A. G. Tsikalakis and N. D. Hatziargyriou, “Centralized control for optimizing microgrids operation,” in Proc. IEEE PESGM, July 2011, pp. 1-8.
    [23] P. Sanjeev, N. P. Padhy, and P. Agarwal, “Peak energy management using renewable integrated DC microgrid,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4906-4917, Sep. 2018.
    [24] Y. S. Roh, Y. J. Moon, J. Park, M. G. Jeong, and C. Yoo, “A multiphase synchronous buck converter with a fully integrated current balancing scheme,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5159-5169, Sep. 2015.
    [25] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012.
    [26] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, “Distributed secondary control for islanded microgrids- a novel approach,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 1018-1031, Feb. 2014.
    [27] S. Moayedi and A. Davoudi, “Distributed tertiary control of DC microgrid clusters,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1717-1733, Feb. 2016.
    [28] M. Kwon and S. Choi, “Control scheme for autonomous and smooth mode switching of bidirectional DC-DC converters in a DC microgrid,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 7094-7104, Aug. 2018.
    B. Interface Converter, Plug-and-play Strategy and Reconfigurable Schematic
    [29] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: Wiley, 2003.
    [30] F. Blaabjerg, F. Iov, R. Teodorescu, and Z. Chen, “Power electronics in renewable energy systems,” in Proc. IEEE EPE-PEMC, 2006, pp. 1-17.
    [31] P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE Compat. Power Electron., 2007, pp. 1-6.
    [32] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, June 2009.
    [33] T. D. Mai, G. Van denBroeck, A. Pevere, and J. Driesen, “Power electronics for potential distribution DC power evolution: a review,” in Proc. IEEE Int. Energy Conf., 2016, pp. 1-6.
    [34] D. Kumar, F. Zare, and A. Ghosh, “DC microgrid technology: system architectures AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects,” IEEE Access, vol. 5, pp. 12230-12256, June 2017.
    [35] Q. Liu, T. Caldognetto, and S. Buso, “Flexible control of interlinking converters for DC microgrids coupled to smart AC power system,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3477-3485, May 2019.
    [36] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
    [37] J. Wei and F. C. Lee, “Two-stage voltage regulator for laptop computer CPUs and the corresponding advanced control schemes to improve light-load performance,” in Proc. IEEE Appl. Power Electron. Conf. Exp., 2004, pp. 1294-1300.
    [38] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 273-284, Mar. 2015.
    [39] T. Lodh, N. Pragallapati, and V. Agarwal, “Novel control scheme for an interleaved flyback converter based solar PV microinverter to achieve high efficiency,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3473-3482, July/Aug. 2018.
    [40] A. Alzahrani, M. Ferdowsi, and P. Shamsi, “A family of scalable non-isolated interleaved DC-DC boost converters with voltage multiplier cells,” IEEE Access, vol. 7, pp. 11701-11721, Jan. 2019.
    [41] A. Shahin, M. Hinaje, J. P. Martin, S. Pierfederici, S. Raël, and B. Davat, “High voltage ratio DC-DC converter for fuel-cell applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3944-3955, Dec. 2010.
    [42] V. Taramasu and B. Wu, “Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5308-5322, Oct. 2014.
    [43] S. Dusmez, A. Hasanadeh, and A. Khaligh, “Comparative analysis of bidirectional three- level DC-DC converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3305-3315, May 2015.
    [44] A. Ganjavi, H. Ghoreishy, and A. A. Ahmad, “A novel single-input dual-out three-level DC- DC converter,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8101-8111, Dec. 2018.
    [45] S. Rezayi, H. Iman-Eini, M. Hamzeh, S. Bacha, and S. Farzamkia, “Dual-output DC/DC boost converter for bipolar DC microgrids,” IET Renew. Power Gener., 2019, vol. 13 Iss. 8, pp. 1402-1410.
    [46] A. A. Elserougi, A. M. Massoud, and S. Ahmed, “A unipolar/bipolar high-voltage pulse generator based on positive and negative buck-boost DC-DC converters operating in discontinuous conduction mode,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5368-5379, Jul 2017.
    [47] Prajof P. and V. Agarwal, “Novel boost-SEPIC type interleaved DC-DC converter for low- voltage bipolar DC microgrid-tied solar PV applications,” in Proc. IEEE 42nd PVSC, 2015, pp. 1-6.
    [48] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “A plug and play operational approach for implementation of an autonomous-micro-grid system,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 615-629, Aug. 2012.
    [49] F. Cingoz, A. Elrayyah, and Y. Sozer, “Plug-and-play nonlinear droop construction scheme to optimize islanded microgrid operations,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2743-2756, Apr. 2017.
    [50] P. J. Chauhan, B. D. Reddy, S. Bhandari, and S. K. Panda, “Battery energy storage for seamless transitions of wind generator in standalone microgrid,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 69-77, Jan./Feb. 2019.
    [51] A. Ghazanfari, M. Hamzeh, and Y. A. I. Mohamed, “A resilient plug-and-play decentralized control for DC parking lots,” IEEE Trans. Smart Grid, vol. 9, no. 3, pp. 1930-1942, May 2018.
    [52] R. Han, M. Tucci, A. Martinelli, J. M. Guerrero, and G. Ferrari-Trecate, “Stability analysis of primary plug-and-play and secondary leader-based controllers for DC microgrid clusters,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 1780-1800, May 2019.
    [53] M. Kamel, R. A. Zane, and D. Maksimović, “Voltage sharing with series output connected battery modules in a plug-and-play DC microgrid,” IEEE Trans. Power Electron., vol. 36, no. 11, pp. 13118-13127, Nov. 2021.
    [54] S. Li, A. T. L. Lee, S. C. Tan, and S. Y. R. Hui, “Plug-and-play voltage ripple mitigator for DC links in hybrid AC-DC power grids with local bus-voltage control,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 687-698, Jan. 2018.
    [55] H. Tao, J. L. Duarte, and M. A. M. Hendrix, “Multiport converters for hybrid power sources,” in Proc. IEEE Power Electronics Specialists Conference, 2008, pp. 3412-3418.
    [56] S. R. Meher, S. Banejee, B. T. Vankayalapati, and R. K. Singh, “A reconfigurable on-board power converter for electric vehicle with reduced switch count,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 3760-3772, Apr. 2020.
    [57] M. Momayyezan, B. Hredzak, and V. G. Agelidis, “Integrated reconfigurable converter topology for high-voltage battery systems,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1968-1979, Mar. 2016.
    [58] J. Sakly, A. B. Abdelghani, I. Slama-Belkhodja, and H. Sammoud, “Reconfigurable DC/DC converter for efficiency and reliability optimization,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 1216-1224, Sep. 2017.
    [59] O. Salari, K. H. Zaad, A. Bakhshai, and P. Jain, “Reconfigurable hybrid energy storage system for an electric vehicle DC-AC Inverter,” IEEE Trans. Power Electon., vol. 35, no. 12, pp. 12846-12860, Dec. 2020.
    [60] Y. D. Lee, G. W. Moon, J. Baek, and C. E. Kim, “A reconfigurable totem-pole PFC rectifier with light load optimization control strategy and soft-switching capability,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4371-4382, Apr. 2021.
    [61] H. K. Jahan, F. Panahandeh, and M. Abapour, “Reconfigurable multilevel inverter with fault-tolerant ability,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7880-7893, Sep. 2018.
    [62] J. L. Soon, D. D. Lu, J. C. Peng, and W. Xiao, “Reconfigurable nonisolated DC-DC converter with fault-tolerant capability,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 8934-8943, Sep. 2020.
    [63] L. Molgonyana, K. Smith, and S. Galloway, “Reconfigurable low voltage direct current charging network for plug-in electric vehicles,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5458-5467, Sep. 2019.
    C. Inverter
    [64] M. N. H. Khan, M. Forouzesh, Y. P. Siwakoti, L. Li, T. Kerekes, and F. Blaabjerg, “Transformerless inverter topologies for single-phase photovoltaic system: a comparative review,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 1, pp. 805-835, Mar. 2020.
    [65] M. Schweizer, T. Friedli, and J. W. Kolar, “Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5515-5527, Dec. 2013.
    [66] A. Salem, H. V. Khang, K. G. Roobbersmyr, M. Norambuena, and J. Rodriguez, “Voltage source multilevel inverters with reduced device count: topological review and novel comparative factors,” IEEE Trans. Power Electron., vol. 36, no. 3, pp. 2720-2747, Mar. 2021.
    [67] T. G. Habetler, R. Naik, and T. A. Nondahl, “Design and implementation of an inverter output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 327-331, May 2002.
    [68] M. Pastura, S. Nuzzo, M. Kohler, and D. Barater, “Dv/dt filtering techniques for electric drives: review and challenges,” in Proc. IEEE IECON, 2019, pp. 7088-7093.
    [69] E. Velander, G. Bohlin, Å. Sandberg, T. Wiik, F. Botling, M. Lindahl, G. Zanuso, and H. P. Nee, “An ultralow loss inductorless dv/dt filter concept for medium-power voltage source motor drive converters with SiC devices,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6072-6081, July 2018.
    [70] J. Kim, J. Choi, and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. PowerCon, 2000, pp. 1659-1664, vol. 3.
    [71] M. Huang, F. Blaabjerg, Y. H. Yang, W. Wu, “Step by step design of a high order power filter for three-phase three-wire grid-connected inverter in renewable energy system,” in Proc. IEEE PEDG, 2013, pp. 1-8.
    [72] H. Deng, R. Oruganti, and D. Srinivasan, “A simple control method for high-performance UPS inverters through output-impedance reduction,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 888-898, Feb. 2008.
    [73] H. G. Jeong, K. B. Lee, S. Choi, and W. Choi, “Performance improvement of LCL- filter-based grid-connected inverters using PQR power transformation,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1320-1330, May 2010.
    [74] Y. Guan, J. M. Guerrero, X. Zhao, J. C. Vasquez, and X. Guo, “A new way of controlling parallel-connected inverters by using synchronous-reference-frame virtual impedance loop- part I: control principle,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4576-4593, June 2016.
    [75] A. Abdelhakim, F. Blaabjerg, and P. Mattavelli, “Modulation schemes of the three-phase impedance source inverters- Part I: classification and review,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6309-6320, Aug. 2018.
    [76] R. Ramos, D. Serrano, P. Alou, J. Á. Oliver, and J. A. Cobos, “Control design of a single- phase inverter operating with multiple modulation strategies and variable switching frequency,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2407-2419, Feb. 2021.
    [77] M. P. Karmierkowski and L. Malesani, “Current control techniques for three-phase voltage- source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
    [78] M. Mohseni and S. M. Islam, “A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2299-2309, Sep. 2010.
    [79] T. Tanaka, T. Sekiya, H. Tanaka, M. Okamoto, and E. Hiraki, “Smart charger for electric vehicles with power-quality compensator on single-phase three-wire distribution feeders,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2628-2635, Nov. 2013.
    [80] H. Tanaka, T. Tanaka, T. Wakimoto, E. Hiraki, and M. Okamoto, “Reduced-capacity smart charger for electric vehicles on single-phase three-wire distribution feeders with reactive power control,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 315-324, Jan./Feb. 2015.
    [81] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
    [82] Amirnaser Yazdani and Reza Iravani, Voltage-sourced converters in power systems: modeling, control, and applications. Piscataway, NJ, USA: Wiley, 2010, pp.245-310.
    D. Energy Storage System
    [83] E. O. Ogunniyi and H. Pienaar, “Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications,” in Proc. DUE, 2017, pp. 233-239.
    [84] P. K. Pathak and A. R. Gupta, “Battery energy storage system,” in Proc. CICT, 2018, pp. 1-9.
    [85] P. Y. Long, A. Cavagnino, S. Vaschetto, C. Feng, and A. Tenconi, “Flywheel energy storage systems for power system application,” in Proc. IEEE 2017 ICCEP, June 2017, pp. 492-501.
    [86] D. Gerada, A. Mebarki, N. L. Brown, C. Gerada, A. Cavagnino, and A. Bolietti, “High-speed electrical machines: technologies, trends, and developments,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2946-2959, June 2014.
    [87] S. Kumar, T. A. Lipo, and B. Kwon, “A 32000r/min axial flux permanent magnet machine for energy storage with mechanical stress analysis,” IEEE Trans. Magn., vol. 52, no. 7, pp. 1-4, July 2016.
    [88] S. R. Gurumurthy, V. Agarwal, and A. Sharma, “A novel dual-winding BLDC generator- buck converter combination for enhancement of the harvested energy form a flywheel,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7563-7573, Dec. 2016.
    [89] M. I. Daoud, A. M. Massoud, A. S. Abdel-Khalik, A. Elserougi, and S. Ahmed, “A flywheel energy storage system for fault ride through support of grid-connected VSC HVDC-based offshore wind farms,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 1671-1680, May 2016.
    [90] M. Murayama, S. Kato, H. Tsutsui, S. Tsuji-Iio, and R. Shimada, “Combination of flywheel energy storage system and boosting modular multilevel cascade converter,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1-4, Apr. 2018.
    [91] J. D. Park, C. Kalev, and H. F. Hofmann, “Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3038-3046, Aug. 2008.
    [92] R. Cárdenas, R. Peña, M. Pérez, J. Clare, G. Asher, and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, Aug. 2006.
    [93] J. R. Hull, T. M. Mulcahy, K. L. Uberka, and R. G. Abboud, “Low rotational drag in high- temperature superconducting bearings,” IEEE Trans. Appl. Supercond., vol. 5, no. 2, pp. 626- 629, June 1995.
    [94] N. Tănase and A. M. Morega, “Passive magnetic bearings for flywheel energy storage- numerical design,” in Proc. IEEE 2014 ICATE, Dec. 2014, pp. 1-4.
    [95] B. Anvari, X. J. Li, H. A. Toliyat, and A. Palazzolo, “A coreless permanent-magnet machine for a magnetically levitated shaft-less flywheel,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4288-4296, Sep./Oct. 2018.
    [96] X. K. Xu, M. Bishop, D. G. Oikarinen, and C. Hao, “Application and modeling of battery energy storage in power systems,” CSEE J. Power Energy Syst., vol. 2, no. 3, pp. 82-90, Sep. 2016.
    [97] Y. Elia, D. D. Lucache, and E. Serea, “Battery energy storage applications: two case studies,” in Proc. IEEE MPS, May 2019, pp. 1-6.
    [98] J. Rocabert, R. Capó-Misut, R. S. Muñoz-Aguilar, J. I. Candela, and P. Rodriguez, “Control of energy storage system integrating electrochemical batteries and supercapacitors for grid- connected applications,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1853-1862, Mar./Apr. 2019.
    [99] A. Sangwongwanich, G. Angenendt, S. Zurmühlen, Y. H. Yang, D. Sera, D. U. Sauer, and F. Blaabjerg, “Enhancing PV inverter reliability with battery system control strategy,” CSEE Trans. Power Electron. Appl., vol. 3, no. 2, pp. 93-101, June 2018.
    [100] A. Sattar, A. Al-Durra, C. Caruana, M. Debouza, and S. M. Muyeen, “Testing the performance of battery energy storage in a wind energy conversion system,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3196-3206, May/June 2020.
    [101] A. H. Fathima and K. Palanisamy, “Battery energy storage applications in wind integrated systems- a review,” in Proc. IEEE ISEG, Sep. 2014, pp. 1-8.
    [102] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics – lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim, Mar. 2015, pp. 444-450.
    [103] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
    [104] K. Bradbury, Energy Storage Technology Review, Duke University, Aug. 2010.
    [105] N. Jabbour and C. Mademlis, “Supercapatiror-based energy recovery system with improved power control and energy management for elevator applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9389-9399, Dec. 2017.
    [106] K. Bellache, M. B. Camara, and B. Dakyo, “Transient power control for diesel-generator assistance in electric boat applications using supercapacitors and batteries,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 6, no. 1, pp. 416-428, Mar. 2018.
    [107] D. Yıldırım, M. H. Akşit, C. Yolaçan, T. Pul, C. Ermiş, B. H. Aghdam, I. Çadırcı and M. Ermiş, “Full-scale physical simulator of all SiC traction motor drive with onboard supercapacitor ESS for light-rail public transportation,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6290-6301, Aug. 2020.
    [108] J. H. Lee, S. H. Lee, and S. K. Sul, “Variable-speed engine generator with supercapacitor: isolated power generation system and fuel efficiency,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2130-2135, Nov./Dec. 2009.
    [109] M. Farhadi and O. Mohammed, “Adaptive energy management in redundant hybrid DC microgrid for pulse load mitigation,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 54-62, Jan. 2015.
    E. EV Bidirectional Battery Charger
    [110] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, Nov. 2011.
    [111] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
    [112] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, Aug. 2013.
    [113] J. G. Pinto, V. Monteiro, H. Goncalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, Mar. 2014.
    [114] B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. R. McNutt, A. B. Lostetter, J. S. Lee, and K. Shiozaki, “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, May 2014.
    [115] H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, Oct. 2014.
    [116] N. Tashakor, E. Farjah, and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2133-2145, Mar. 2017.
    [117] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, Mar. 2017.
    [118] H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicle,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498-2507, Apr. 2017.
    [119] D. H. Kim, M. J. Kim, and B. K. Lee, “An integrated battery charger with high power density and efficiency for electric vehicles,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4553-4565, June 2017.
    [120] V. Monteiro, J. C. Ferreira, A. A. Nogueiras Meléndez, C. Couto, and J. L. Afonso, “Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1000-1011, Feb. 2018.
    [121] H. V. Nguyen, D. D. To, and D. C. Lee, “Onboard battery chargers for plug-in electric vehicles with dual functional circuit for low-voltage battery charging and active power decoupling,” IEEE Access, vol. 6, pp. 70212-70222, 2018.
    [122] S. Jeong, Y. Jeong, J. Kwon, and B. Kwon, “A soft-switching single-stage converter with high efficiency for a 3.3-kW on-board charger,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 6959-6967, Sept. 2019.
    [123] H. V. Nguyen, D. C. Lee, and F. Blaabjerg, “A novel SiC-based multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5635-5646, May 2021.
    [124] J. Cai and X. Zhao, “An on-board charger integrated power converter for EV switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3683-3692, May 2021.
    [125] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
    [126] S. Habib, M. M. Khan, F. Abbas, L. Sang, M. U. Shahid, and H. Tang, “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles,” IEEE Access, vol. 6, pp. 13866-13890, 2018.
    [127] M. R. Khalid, I. A. Khan, S. Hameed, M. S. J. Asghar, and J. S. Ro, “A comprehensive review on structural topologies, power levels, energy storage systems, and standards for electric vehicle charging stations and their impacts on grid,” IEEE Access, vol. 9, pp. 128069-128094, 2021.
    [128] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, June 2004.
    [129] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Proc. Elect. Power Appl., vol. 1, no. 3, pp. 316-328, May 2007.
    [130] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
    [131] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
    [132] L. Huber, M. Kumar, and M. M. Jovanović, “Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7123-7137, Dec. 2015.
    [133] R. Huang, J. Xu, Q. Chen, L. Wang, and X. Geng, “Independent current control with differential feedforward for three-phase boost PFC rectifier in wide AC input frequency application,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 6, pp. 7062-7071, Dec. 2022.
    [134] F. Musavi, M. Craciun, D. S. Gautam, W. Eberle, and W. G. Dunford, “An LLC resonant DC–DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437-5445, Dec. 2013.
    [135] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, Apr. 2013.
    [136] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC-DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
    [137] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, June 2015.
    [138] U. Kundu and P. Sensarma, “Gain-relationship-based automatic resonant frequency tracking in parallel LLC converter,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 874-883, Feb. 2016.
    [139] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, Mar. 2017.
    [140] L. F. Martins, D. Stone, and M. Foster, “Modelling of bidirectional CLLC resonant converter operating under frequency modulation,” in Proc. IEEE ECCE, 2019.
    [141] A. Khaligh and M. D'Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3306-3324, Apr. 2019.
    [142] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman, and O. Trescases, “Active saturation mitigation in high-density dual-active-bridge DC–DC converter for on- board EV charger applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4376-4387, Apr. 2020.
    [143] J. Min and M. Ordonez, “Bidirectional resonant CLLC charger for wide battery voltage range: asymmetric parameters methodology,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 6662-6673, June 2021.
    [144] Y. Cao, M. Ngo, R. Burgos, A. Ismail, and D. Dong, “Switching transition analysis and optimization for bidirectional CLLC resonant DC transformer,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3786-3800, Apr. 2022.
    [145] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, Mar. 2012.
    [146] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, Dec. 2013.
    [147] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proc. IEEE Proc., vol. 101, no. 11, pp. 2409-2427, Nov. 2013.
    [148] H. Turker and S. Bacha, “Optimal minimization of plug-in electric vehicle charging cost with cehicle-to-home and vehicle-to-grid concepts,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10281-10292, Nov. 2018.
    [149] H. N. de Melo, J. P. F. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, Jan. 2018.
    [150] N. Erdogan, F. Erden, and M. Kisacikoglu, “A fast and efficient coordinated vehicle-to-grid discharging control scheme for peak shaving in power distribution system,” J. Modern Power Syst. Clean Energy, vol. 6, no. 3, pp. 555-566, May 2018.
    [151] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, Mar. 2018.
    [152] S. A. Amamra and J. Marco, “Vehicle-to-grid aggregator to support power grid and reduce electric vehicle charging cost,” IEEE Access, vol. 7, pp. 178528-178538, 2019.
    [153] M. Moschella, M. A. A. Murad, E. Crisostomi, and F. Milano, “Decentralized charging of plug-in electric vehicles and impact on transmission system dynamics,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1772-1781, Mar. 2021.
    [154] S. Das, P. Acharjee and A. Bhattacharya, “Charging scheduling of electric vehicle incorporating grid-to-vehicle and vehicle-to-grid technology considering in smart grid,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1688-1702, Mar.-Apr. 2021.
    [155] T. J. C. Sousa, V. Monteiro, J. C. A. Fernandes, C. Couto, A. A. N. Meléndez, and J. L. Afonso, “New perspectives for vehicle-to-vehicle (V2V) power transfer,” in Proc. IEEE IECON, pp. 5183-5188, 2018.
    [156] S. Wang, H. Li, Z. Zhang, M. Li, J. Zhang, X. Ren, and Q. Chen, “Multifunction capability of SiC bidirectional portable chargers for electric vehicles,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 5, pp. 6184-6195, Oct. 2021.
    [157] E. Ucer, R. Buckreus, M. E. Haque, M. Kisacikoglu, Y. Sozer, S. Harasis, M. Guven, and L. Giubbolini, “Analysis, design, and comparison of V2V chargers for flexible grid integration,” IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4143-4154, July-Aug. 2021.
    [158] M. Shurrab, S. Singh, H. Otrok, R. Mizouni, V. Khadkikar, and H. Zeineldin, “An efficient vehicle-to-vehicle (V2V) energy sharing framework,” IEEE Internet Things J., vol. 9, no. 7, pp. 5315-5328, April, 2022.
    [159] U. B S, V. Khadkikar, H. H. Zeineldin, S. Singh, H. Otrok, and R. Mizouni, “Direct electric vehicle to vehicle (V2V) power transfer using on-board drivetrain and motor windings,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 10765-10775, Nov. 2022.
    [160] S. Liu, Q. Ni, Y. Cao, J. Cui, D. Tian, and Y. Zhuang, “A reservation-based vehicle-to- vehicle charging service under constraint of parking duration,” IEEE Syst. J., vol. 17, no. 1, pp. 176-187, Mar. 2023.
    [161] A. Shafiqurrahman, B. S. Umesh, N. A. Sayari, and V. Khadkikar, “Electric vehicle-to- vehicle energy transfer using on-board converters,” IEEE Trans. Transport. Electrific., vol. 9, no. 1, pp. 1263-1272, Mar. 2023.
    [162] D. Qin, Q. Sun, R. Wang, D. Ma, and M. Liu, “Adaptive bidirectional droop control for electric vehicles parking with vehicle-to-grid service in microgrid,” CSEE J. Power Energy Syst., vol. 6, no. 4, pp. 793-805, Dec. 2020.
    [163] M. S. Rahman, M. J. Hossain, J. Lu, F. H. M. Rafi, and S. Mishra, “A vehicle-to-microgrid framework with optimization-incorporated distributed EV coordination for a commercial neighborhood,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1788-1798, Mar. 2020.
    [164] K. Lai and L. Zhang, “Sizing and siting of energy storage systems in a military-based vehicle-to-grid microgrid,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 1909-1919, May-June 2021.
    [165] S. Li, P. Zhao, C. Gu, J. Li, S. Cheng, and M. Xu, “Battery protective electric vehicle charging management in renewable energy system,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1312-1321, Feb. 2023.
    F. Electric Machines
    [166] P. C. Sen, Principle of Electric Machines and Power Electronics, 3rd ed. Canada: Wiley John & Sons, Inc., 2014.
    [167] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New Jersey: Prentice Hall, Inc., 2002.
    [168] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [169] T. Marcic, B. Stumberger, and G. Stumberger, “Comparison of induction motor and line-start IPM synchronous motor performance in a variable-speed drive,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp.2341-2352, 2012.
    [170] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
    [171] Q. Shen, N. Sun, G. Zhao, X. Han and R. Tang, “Design of a permanent magnet synchronous motor and performance analysis for subway,” in Proc. IEEE APPEEC, pp. 1-4, 2010.
    [172] R. Menon, A. H. Kadam, N. A. Azeez and S. S. Williamson, “A comprehensive survey on permanent magnet synchronous motor drive systems for electric transportation applications”, in Proc. IEEE Ind. Electron. Soc., pp. 6627-6632, 2016.
    [173] M. Rosyadi, S. M. Muyeen, R. Takahashi and J. Tamura, “Voltage stability control of wind farm using PMSG based variable speed wind turbine,” in Proc. IEEE ICEM, pp. 2192-2197, 2012.
    [174] G. Boztas and O. Aydogmus, “Design of a high-speed PMSM for flywheel systems,” in Proc. ICPEA, pp. 1-5, 2019.
    [175] Y. Chen, J. Yang, X. Zhang and J. Gao, “An enhanced DC-Link voltage control method for high-speed PMSM/G in flywheel energy storage system with indirect feedforward of consumed power and speed compensation,” in Proc. IEEE ICEMS, pp. 1-6, 2019.
    [176] T. Ackermann, Wind power in power systems, United States: John Wiley & Sons Ltd., 2005.
    [177] A. A. Daoud, S. S. Dessouky and A. A. Salem, “Control scheme of PMSG based wind turbine for utility network connection,” in Proc. EEEIC, pp. 1-5, 2011.
    [178] H. P. Rimal, M. Brenna, N. R. Karki and A. K. Verma, “Control of PMSG based wind turbines for renewables based DC distribution,” in Proc. SKIMA, pp. 1-7, 2015.
    [179] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: State-of-art and emerging technologies,” in Proc. IEEE, vol. 103, no. 5, pp. 740-788, 2015.
    [180] F. Yuan, Q. Liu, and Y. Chen, “The research of variable speed constant frequency wind power generation technology,” Advanced Materials Research, pp. 619-621, 2014.
    [181] M. M. Mansour, M. N. Mansouri, and M. F. Mimouni, “Comparative study of fixed speed and variable speed wind generator with pitch angle control,” in Proc. IEEE ICC, pp. 1-7, 2011.
    [182] A. H. Rajaei, M. Mohamadian, and A. Yazdian Varjani, “Vienna-rectifier-based direct torque control of PMSG for wind energy application,” IEEE Trans. on Ind. Electron., vol. 60, no. 7, pp. 2919-2929, 2013.
    [183] Y. Zhao, C. Wei, Z. Zhang and W. Qiao, “A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 4, pp. 203-216, December 2013.
    [184] M. Z. Lu, Z. W. Guo and C. M. Liaw, “A battery/supercapacitor hybrid powered EV SRM drive and microgrid incorporated operations,” IEEE Trans. Transport. Electrific., vol. 7, no. 4, pp. 2848-2863, Dec. 2021.
    G. More Electric Aircraft
    [185] Pat Wheeler and Sergei Bozhko, “The more electric aircraft: technology and challenges,” IEEE Electrific. Mag., vol. 2, no. 4, pp. 6-12, 2014.
    [186] B. Sarlioglu and C. T. Morris, “More electric aircraft: review, challenges, and opportunities for commercial transport aircraft,” IEEE Trans. Transport. Electrific., vol. 1, no. 1, pp. 54-64, 2015.
    [187] G. Buticchi, S. Bozhko, M. Liserre, P. Wheeler and K. Al-Haddad, “On-board microgrids for the more electric aircraft- technology review,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5588-5599, 2019.
    [188] A. Barzkar and M. Ghassemi, “Electric power systems in more and all electric aircraft: a review,” IEEE Access, vol. 8, pp. 169314- 169332, 2020.
    [189] C. W. Yang, M. Z. Lu, and C. M. Liaw, “Development of an aircraft electric power architecture with integrated ground power unit,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 4, pp. 3446-3459, Aug. 2022.
    H. DC-bus Voltage-level Selection
    [190] S. Moussa, M. J. Ghorbal, I. Slama-Belkhodja, “DC voltage level choice in residential remote area,” in Proc. IREC, 2018, pp. 1-6.
    [191] W. X. Li, X. M. Mou, Y. B. Zhou, and C. Marnay, “On voltage standards for DC home microgrids energized by distributed sources,” in Proc. IEEE PEMC, 2012, pp. 2282-2286.
    [192] J. W. Chen, C. J. Wang, and J. Chen, “Investigation on the selection of electric power system architecture for future more electric aircraft,” IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 563-576, June 2018.
    [193] A. Pratt, P. Kumar, and T. V. Aldridge, “Evaluation of 400V DC distribution in telco and data centers to improve energy efficiency,” in Proc. INTELEC, 2007, pp. 32-39.
    I. Others
    [194] S. Heier, Grid Integration of Wind Energy Conversion System, 2nd Ed., John Wiley & Sons Ltd., New York, 1998.
    [195] Semikron Danfoss, “IGBT Modules SEMITOP 3,” SK30MLI066 datasheet, Mar., 2009.
    [196] Pihsiang Energy Technology Co., Ltd., “PHET Lithium Iron Phosphate (LiFePO4) Secondary Cell Specification Product Model: IFR13N0-EP1500,” IFR13N0-EP1500 datasheet, Ver. 5.6, 13 Sept., 2019.
    [197] IXYS Corporation, “Preliminary Technical Information,” IXFN160N30T datasheet, 2014.
    [198] Cosmo Ferrites Ltd., “Product Data Sheet Core-EE5525,” EE5525 datasheet, 2022. [Online]. Available: https://www.cosmoferrites.com/product-size/e-cores/ee5525. [Accessed: Jul. 20, 2021]

    QR CODE