簡易檢索 / 詳目顯示

研究生: 黎綺雯
Yee-Man Lai
論文名稱: 知識外溢對高科技廠商表現之貢獻-台灣新竹科學園區之實証分析
The Contribution of Knowledge Spillovers on High-technology Firms' Performance: An Empirical Study of Taiwan's HsinChu Science-based Industrial Park
指導教授: 祁玉蘭
Yih-Luan Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 經濟學系
Department of Economics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 85
中文關鍵詞: 知識外溢科學園區高科技產業聚落
外文關鍵詞: Knowledge spillovers, Science park, Panel data
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,廠商之間的知識外溢效果,被認為對生產力提升有正面影響而備受廣泛重視。最近的文獻指出廠商間地理上之接近和技術上相似可增強知識外溢效果,因而使得知識外溢效果成為產業群聚中一個重要的好處。在台灣,新竹科學園區短短二十多年內呈現快速成長,加上園區內地理及技術上相近,使人聯想到竹科內是否存在知識外溢效果?並此現象對廠商表現是否有正面的貢獻?本論文著重於探討竹科內的知識外溢效果對廠商表現之貢獻。此外,矽谷對竹科半導體產業的國際知識外溢效果(International Knowledge Spillover)亦為本論文之討論範圍。我們依照Jaffe(1986)所提出的technology-based approach,使用廠商已核准專利資料在技術分類上之分佈,建立知識外溢變數之基礎。根據K-平均分群法之結果,把全體知識外溢效果(Total Knowledge spillover)分為群內知識外溢效果(Internal Knowledge Spillover)及群外知識外溢效果(External Knowledge Spillover)。本實証使用之資料樣本為2000年至2004年新竹科學園區之上市、上櫃及興櫃公司,共有92家竹科廠商被採用。估計方法則採用一次差分一般動差法(Generalized Method of Moment, GMM)選擇適當之工具變數估計模型。本篇研究實證結果有三:(1)全體知識外溢效果對廠商表現有正面但不顯著的貢獻。(2)群外知識外溢效果對廠商表現有正面且顯著的貢獻,而群內知識外溢效果對廠商表現則有正面且不顯著的貢獻。(3)國際間知識外溢效果對廠商表現有正面且顯著的貢獻。


    Knowledge spillover is regarded as one of the important sources of industrial agglomeration. To gauge its importance in agglomeration economies, this thesis attempts to assess the knowledge spillover effects on HsinChu Science-based Industrial Park (HSIP)’s high-tech firm performance, following Jaffe’s methodology (1986) to construct knowledge spillover variables. Then, through the result of k-mean clustering, we further construct intra- and inter-cluster knowledge spillovers and analyzed their impacts in this thesis. Furthermore, the influence of the international knowledge spillover from Silicon Valley on HSIP semiconductor industry are also examined A first-difference GMM econometric method is applied to examine firm-specific effect and simultaneity. A firm-level dataset, which consists of 92 HSIP firms over the period of 2000-2004, are used in analysis. At the end, the results indicate total, local and external, domestic and international knowledge spillovers all positively affect high-tech firms’ net sales, whereas only external and international knowledge spillovers are statistically significant.

    1. Introduction 2. HSIP as“the Eastern Silicon Valley” 2.1 Background 2.2 Government Encouragement 2.3. Linkages between HSIP companies 3. Literature Review 4. Empirical Methodology 4.1 Spillover Variables Construction 4.2 Model Specification and Econometric Method 4.3 The criteria for choosing sample firms 5. Empirical Results 5.1 The Results for Total Spillover Stock 5.2 The Results for Local and External Spillover Stocks 5.3 The Results for Domestic and international Spillover Stocks 6. Conclusion and Implications References Appendix

    Arellano, M. and Bond, S. (1991), Some tests of specification for panel data Monte Carlo evidence and an application to employment equation. Review of Economic Studies 58:277-297.
    Aghion, P. and Howitt, P. (1989), A model of growth through creative destruction. Econometrica 60, (2):323-351.
    Adams, J. and Jaffe, A. (1996), Bounding the effects of R&D: an investigation using matched establishment-firm data. NBER Working Paper, 5544.
    Baltagi, B.H. (2001), Econometric Analysis of Panel Data. John Wiley.
    Baum, C.F.; Schaffer, M.E., and Stillman, S. (2002), Instrumental variables and GMM: Estimation and testing. Boston College Economics Working Paper, 545.
    Branstetter, L.G. (2001), Are knowledge spillovers international or intranational in scope? Microeconometric evidence from the U.S and Japan. Journal of International Economics 53:53-79.
    Chen, S. and Choi, C.J. (2004), Creating a knowledge-based city: the example of HsinChu Science Park. Journal of knowledge Management 8, (5):73-82.
    Chen, T.J. (2005), The successful factors for an industry cluster: The experience of Hsinchu Science Park. Chung-Hua institution for Economic Research.
    Chu, Y.P. (2003), Industrial science & technology policy in a critical era.
    International Conference. New Trends and Challenges of Science and Technological Innovation in a Critical Era.
    Cincera, M. (1998), Economic and technological performances of international firms. PhD. dissertation, Department of Economics at Université Libre the Bruxelles. (http://student.ulb.ac.be/~mcincera/research/research.htm#Ph.D)
    Cincera, M. and Potterie, B.V.P. (2001), International R&D Spillovers : A SURVEY. Brussels Economic Review 169: 3-31.
    Cincera, M. (2005), Firms’ productivity growth and R&D spillovers: An analysis of alternative technological proximity measures. Working Paper No. 4894, Centre for Economic Policy Research.
    Griliches, Z. (1979), Issues in assessing the contribution of research and development to productivity slowdown. Bell Journal of Economics 10:92-116.
    Grossman, G.M., and Helpman, E. (1991), Quality ladders in the theory of growth. Review of Economic Studies 58, (1):43-61
    Hansen, L.P., (1982), Large sample properties of generalized method of moments
    estimators. Econometrica 50, (4):1029-1054
    Howells, J. (1996), Tacit knowledge, innovation and technology transfer. Technology Analysis and Strategic Management 8, (2):91-106.
    Jaffe, A. (1985), Quantifying the effects of technological opportunity and research spillovers in industrial innovation. PhD. dissertation. Department of Economics, Harvard University.
    Jaffe, A. (1986), Technological opportunity and spillover of R&D: Evidence from firms patents, profits, and market value. American Economic Review 76: 984-1001.
    Jaffe, A. (1989), Real effects of academic research. American Economic Review 79: 957-970.
    Jou, S.C. and Chen D.S. (2001), Keeping the high-technology region open and dynamic: The organizational networks of Taiwan’s integrated circuit industry. GeoJournal 53, (1):81-87.
    Keller, W. (2004), International technology diffusion. The Journal of Economic Literature 42, (3): 752-782.
    King, D., Covin, J.G. and Hegarty W. (2003), Complementary resources and the exploitation of technological innovations. Journal of Management 29, (4):589-606.
    Koo, J. (2004), Technology spillovers, agglomeration, and regional economic development. Manuscript prepared for the Journal of Planning Literature, Maxine Goodman Levin College of Urban Affairs, Cleveland State University.
    Krugman, P. (1991), Increasing returns and economic geography. Journal of Political Economy 99:483-499.
    Lu, W.C.; Chen, J.R. and Wang, C.L. (2005), R&D, spatial spillovers and productivity growth: Evidence from dynamic panel. (http://www.sinica.edu.tw/econ/activities/past/20050614.pdf)
    Los, B. and Verspagen, B. (2000), R&D spillovers and productivity: Evidence from U.S. manufacturing microdata. Empirical Economics 25:127-148.
    McNaughton, R.B. and Xu, S.X. (2003), High technology cluster evolutions: A network analysis of Canada’s technology triangle. Institute of Innovation Research, Waterloo University.
    Nelson, R.R. and Winter, S.G.. (1982), An evolutionary theory of economic change. Belknap Press: Cambridge, MA.
    Nadiri, I. (1993), Innovations and technological spillovers. NBER Working Paper, 4423.
    Porter, M. (1990), The Competitive Advantage of Nations. London: Macmillan.
    Romer, P.M. (1990), Endogenous technological change. Journal of Political Economy 98:71-102.
    Tsai H.A. (2005), Knowledge spillovers and high-technologynology clustering: Evidence from Taiwan’s HsinChu Science-based Industrial Park. Contemporary Eonomic Policy 23:116-128.
    Yuan, J.C., Chang, C.Y., and Chen, L.M. (1998), Strategies of semiconductor industry in Taiwan. Institute of Technology and Innovation Management, National Chiao Tung University.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE