研究生: |
梁思潁 Liang, Sz-Ying |
---|---|
論文名稱: |
以小波轉換為基礎之心電圖特徵萃取與雜訊消除 Wavelet-Based ECG Features Extraction and Noise Reduction |
指導教授: |
馬席彬
Ma, Hsi-Pin |
口試委員: |
黃元豪
蔡佩芸 楊家驤 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 心電圖 、連散小波轉換 、P波 、QRS複合波 、T波 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,心電圖已成為診斷心臟疾病的常見的方法。心電圖紀錄了人每次心跳時間內的電流變化,藉由偵測心電圖中不同的特徵(P 波、QRS複合波與 T 波)可以更快的了解目前身體狀況。小波轉換是在近年來常被利用在訊號分析上,在於小波轉換可以表示為多解析度分析,主要是小波轉換在時域和頻域都是局部的,而標準的傅立葉變換只在頻域上是局部的。小波轉換中常利用全域臨界值來處理訊號上被其外在雜訊所干擾的方法,因此我們利用離散小波轉換中的Symlet5與軟性臨界值來做進一步的分析。
在論文中,利用離散小波轉換來加以分析一個單導聯心電圖系統。起初,我們檢測每一次心跳中的峰值R,藉由找出的峰值R,我們設定的一窗口大小來找出峰值Q與S。接著利用峰值Q與S,我們在不同情況利用不同的方式如過零點方式、最大值與最小值來偵測QRS複合波的起始位置與終點位置。最後,我們利用小波轉換來重建訊號來得以去除高頻與低頻雜訊的干擾,藉由離散小波轉換分層重建訊號,在訊號所處於的頻域帶上,使用可適性的窗口大小分別來檢測P波與T波。而藉由我們找尋到的每一個特徵,我們可能推斷出一些症狀。心臟跳動的速率可以幫助檢測心血管異常問題,如心搏過緩(心跳速率每分鐘小於60下)或是心搏過速(心跳速率每分鐘大於100下)。PR時間長度為評估心房至心室的傳導速度,當間隔時過長也可能代表有房室阻斷的情況。而QTc時間長度為評估整個心室收縮所花費的時間。因此,藉由偵測出這些特徵所在的位置可以更進一步的了解我們心臟整體的狀態。
利用QT 資料庫中的所提供心臟科醫生所註解的波形位置與我們演算法中所找出的位置評比的結果皆有很高的靈敏度。在QRS複合波的檢測我們得到靈敏度皆超過99.94%,而在P波與T波的靈敏度中,分別也高達99.75%與99.7%的比例。
[1] T. LeDuc. (2010, Nov.) USA lifeexpextancy. [Online]. Available: http://www.
worldlifeexpectancy.com/usa-cause-of-death-by-age-and-gender
[2] P. Laguna, N. Thakor, Caminal, P. Jan, R. Yoon, H. R. B. de Luna, V. A. Marti, and J. Guindo, “New algorithm for QT interval analysis in 24-hour holter ECG: performance and applications,” Medical and Biological Engineering and Computing, vol. 28, no. 1, Jan. 1990.
[3] D. Coast, R. Stern, G. Cano, and S. Briller, “An approach to cardiac arrhythmia analysis using hidden Markov models,” IEEE Transactions on Biomedical Engineering, vol. 37, no. 9, pp. 826–836, Sep. 1990.
[4] E. Soria Olivas, M. Martinez Sober, J. Calpe Maravilla, J. Guerrero Martinez,
J. Chorro Gasco, and J. Espi Lopez, “Application of adaptive signal processing for determining the limits of P and T waves in an ECG,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 8, pp. 1077–1080, Aug. 1998.
[5] S. Z. Mahmoodabadi, A. Ahmadian, M. D. Abolhasani, M. Eslami, and J. H. Bidgoli, “ECG feature extraction based on multiresolution wavelet transform,” in IEEE International Conference on Engineering in Medicine and Biology Society (EMBS), Shanghai, China, Jan. 2006, pp. 3902–3905.
[6] S. Ardhapurkar, R. Manthalkar, and S. Gajre, “Interpretation of normal and pathological beats using multiresolution wavelet analysis,” in IEEE International Conference on Computing in Cardiology (CinC), Krakow, Poland, Sep. 2012, pp. 53–56.
[7] Q. Xue, Y. Hu, and W. J. Tompkins, “Neural-network-based adaptive matched filtering for QRS detection,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 4, pp. 317–329, Apr. 1992.
[8] A. Arafat and T. Hasan, “Automatic detection of ECG wave boundaries using empirical mode decomposition,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, Apr. 2009, pp. 461–464.
[9] S. Mukhopadhyay, M. Mitra, and S. Mitra, “Time plane ECG feature extraction using hilbert transform, variable threshold and slope reversal approach,” in IEEE International Conference on Communication and Industrial Application (ICCIA), Kolkata, West Bengal, India, Dec. 2011, pp. 1–4.
[10] J. Hall, Guyton and Hall Textbook of Medical Physiology, 12th ed. Jackson, MS, USA: Saunders, Jun. 2010.
[11] J. Loscalzo, Harrison’s Cardiovascular Medicine, 1st ed. New York, NY, USA:
McGraw-Hill Prof Med/Tech, May. 2010.
[12] M. Gary H. Gibbons. (2011, Nov.) Your heart’s electrical system. [Online]. Available: http://www.nhlbi.nih.gov/health/health-topics/topics/hhw/electrical.html
[13] D. C. Crandall. Cardiovascular disorders (adult care nursing). [Online]. Available: http://what-when-how.com/nursing/cardiovascular-disorders-adult-care-nursing-part-1/
[14] M. Frank G. Yanowitz. (2009, Oct.) ECG learning center. [Online]. Available:
http://ecg.utah.edu/
[15] A. Sparshott. (2010, May) A quick guide to ECG. [Online]. Available: http:
//www.ivline.info/2010/05/quick-guide-to-ecg.html
[16] G. D. Clifford, F. Azuaje, and P. McSharry, Advanced Methods and Tools for ECG Data Analysis, 1st ed. Norwood, MA, USA: Artech House Inc., Sep. 2006.
[17] H. Attack. (2013, May) What is the electrocardiogram ECG? [Online]. Available: http://www.attackheart.com/treatment-methods/what-is-the-electrocardiogram-ecg.html
[18] P. Laguna, R. Mark, A. Goldberg, and G. Moody, “A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG,” in IEEE International Conference of the Computers in Cardiology (CinC), Lund, Sweden, Sep. 1997, pp. 673–676.
[19] G. Moody and R. Mark, “The MIT-BIH arrhythmia database on CD-ROM and software for use with it,” in IEEE International Conference of the Computers in Cardiology (CinC), Chicago, IL, USA, Sep. 1990, pp. 185–188.
[20] A. Taddei, A. Biagini, G. Distante, M. Emdin, M. G. Mazzei, P. Pisani, N. Roggero, M. Varanini, R. Mark, G. Moody, L. Braaksma, C. Zeelenberg, and C. Marchesi, “The European ST-T database: development, distribution and use,” in IEEE International Conference of the Computers in Cardiology (CinC), Chicago, IL, USA, Sep. 1990, pp. 177–180.
[21] C. Cai and P. de B. Harrington, “Different discrete wavelet transforms applied to denoising analytical data,” Journal of Chemical Information and Computer Sciences, vol. 38, no. 6, pp. 1161–1170, Sep. 1998.
[22] V. Raj and T. Venkateswarlu, “ECG signal denoising using undecimated wavelet transform,” in IEEE International conference on Electronics Computer Technology (ICECT), vol. 3, Kanyakumari, TN, India, Apr. 2011, pp. 94–98.
[23] I. M. Johnstone and B.W. Silverman, “Wavelet threshold estimators for data with correlated noise,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 59, no. 2, pp. 319–351, Jan. 1997.
[24] H. Y. Lin and H. P. Ma, “A wavelet based method for noise reduction and R wave detection algorithm in ECG signal,” in VLSI Design/CAD Symposium, Kenting, Taiwan, Aug. 2012.
[25] A. Espiritu Santo Rincon and C. Carbajal Fernandez, “ECG feature extraction via waveform segmentation,” in IEEE International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), Tuxtla Gutierrez, Chiapas, Mexico, Sep. 2010, pp. 250–255.
[26] B. Technologies, J. Suri, J. Spaan, and S. Krishnan, Advances in Cardiac Signal Processing, 1st ed. New York, NY, USA: Springer Berlin Heidelberg, Apr. 2007.
[27] G. G. Lee, J. Y. Hu, C. F. Chen, and H. H. Lin, “Gabor feature extraction for electrocardiogram signals,” in IEEE International Conference on Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, Taiwan, Nov. 2012, pp. 304–307.
[28] J. Martinez, R. Almeida, S. Olmos, A. Rocha, and P. Laguna, “A wavelet-based ECG delineator: evaluation on standard databases,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 4, pp. 570–581, April 2004.
[29] P. Laguna, R. Jan´e, and P. Caminal, “Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database,” Computers and Biomedical Research, vol. 27, no. 1, pp. 45–60, Feb. 1994.
[30] A. Ghaffari, M. Homaeinezhad, M. Akraminia, M. Atarod, and M. Daevaeiha, “A robust wavelet-based multi-lead electrocardiogram delineation algorithm,” Medical Engineering Physics, vol. 31, no. 10, pp. 1219 – 1227, Dec. 2009.
[31] A. M. C. Chao Lin, Giremus and J. Y. Tourneret, “Beat-to-beat P and T wave delineation in ECG signals using a marginalized particle filter,” in IEEE International Conference on Signal Processing Conference (EUSIPCO), Bucharest, Romania, Aug. 2012, pp. 479– 483.
[32] C. Chao Lin, Mailhes and J. Y. Tourneret, “P- and T-wave delineation in ECG signals using a bayesian approach and a partially collapsed gibbs sampler,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2840–2849, Dec. 2010.
[33] Bustamante, S. C.A., Duque, A. Orozco Duque, and J. Bustamante, “ECG delineation and ischemic ST-segment detection based in wavelet transform and support vector machines,” in IEEE International Conference on Pan American Health Care Exchanges (PAHCE), Medellin, Colombia, Apr. 2013, pp. 1–7.
[34] E. H. J, “Recommendations for measurement standards in quantitative electrocardiography,” European Heart Journal, vol. 6, no. 10, pp. 815–825, Oct. 1985.