簡易檢索 / 詳目顯示

研究生: 廖翌傑
Liao,Yi Chieh
論文名稱: 分子離子中紅外飽和吸收光譜系統之改善
Improvement of Mid-Infrared Saturation Absorption Spectroscopy System of Molecular Ions
指導教授: 施宙聰
Shy, Jow Tsong
口試委員: 崔祥辰
Chui, Hsiang-Chen
周哲仲
Chou, Che-Chung
許艷珠
Hsu, Yen-Chu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 64
中文關鍵詞: 飽和吸收分子離子中紅外
外文關鍵詞: saturation absorption spectroscopy, molecular ions, mid-infrared
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • H3^+為結構最簡單的三原子分子離子,其結構由三個質子與兩個電子組成。H3+的簡單結構使得理論計算上可以達到很高的精確度。具有指標性的H3^+三原子分子離子,其理論計算方法可以廣泛應用在其他種類的三原子分子離子。

    在2011年,我們團隊第一個利用飽和吸收光譜方式量測到H3+的躍遷頻率。陳炫辰建立了一套單頻連續波中紅外光的光摻量震盪器(optical parametric oscillator)系統,用來觀測中紅外分子離子飽和吸收光譜。實驗中陳炫辰利用調製頻率的方式,調製OPO的pump雷射的輸出頻率,經由鎖相放大器取得三階解調微分訊號,最後利用光纖光頻梳系統進行量測。最後得到的躍遷頻率與其他團隊的躍遷頻率相比有著很大的差異。

    現在我們改善了之前的中紅外分子離子飽和吸收光譜儀系統,包括了延伸負光輝放電管、OPO、碘穩頻系統和可調式的差頻鎖相系統。我們使用了一台Nd:YAG雷射做為OPO的pump雷射,這台pump雷射來自可調式的差頻鎖相系統。OPO產生的signal光與idler光其波長範圍分別為1350 nm到1640 nm與3.2 μm到4 μm。除此之外,我們利用離子濃度調製與pump強度調製的方式取代了先前pump光輸出頻率的調製。利用這個方式我們量測到7條R branch的躍遷頻率。有6條的不準度都在MHz以下;和其他團隊的R branch躍遷頻率比起來,比較值都在MHz以下。在Q branch躍遷頻率上,我們也量測到Q(1,0),其躍遷頻率的不準度在MHz以下。


    H3+, which consists of three protons and two electrons, is the simplest polyatomic molecule. Due to its simple structure, the theoretical calculations to a very high accuracy can be performed. H3+ plays a role as benchmark molecule in other calculations of triatomic species.

    In 2011, our group first measured the transition frequencies of H3+ by use of saturation absorption spectroscopy. Chen-Hsuan Chen built a CW optical parametric oscillator system for the observation of mid-infrared saturation absorption spectroscopy of molecular ions. He used the frequency modulation method in the experiment. He applied frequency modulation on the output frequency of pump laser of OPO and derived the three order error signal from lock-in amplifier. He measured the transition frequencies with fiber OFC. The transition frequencies of H3+ were large discrepancy comparing with other groups.

    We have improved a mid-infrared saturation absorption spectroscopy system of molecular ions. The system includes extended negative glow discharge system, mid-infrared optical parametric oscillator (OPO), I2 stabilized Nd:YAG laser system and tunable offset locking system. We use Nd:YAG laser from tunable offset locking system as pump laser of OPO. The wavelength range of signal wave and idler wave is 1350 nm ~ 1640 nm and 3.2 μm ~ 4 μm, respectively. Furthermore, we replace the method of modulation on the output frequency of pump laser with concentration modulation of ion and pump intensity modulation. We have observed seven of R branch, six of them have sub-MHz uncertainties. Our results are consistent with other sub-Doppler measurements of R branch with a discrepancy MHz. One of the Q branch, Q(1,0), is also measured and have sub-MHz uncertainties.

    1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fundamental Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Previous Results on Transition Frequency of H+3 . . . . . . . . . . . . 2 1.5 Mid-Infrared Saturation Absorption Spectroscopy System . . . . . . . 3 1.5.1 Optical Parametric Oscillator (OPO) . . . . . . . . . . . . . . 3 1.5.2 Extended Negative Glow Discharge Tube . . . . . . . . . . . . 5 1.5.3 I2-Stabilized Nd:YAG Laser . . . . . . . . . . . . . . . . . . . 5 1.5.4 Tunable O set Locking System . . . . . . . . . . . . . . . . . 6 2 Apparatus 7 2.1 OPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 OPO System . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Adjustment of Wavelength of OPO . . . . . . . . . . . . . . . 8 2.1.3 Stabilization of Signal Wave . . . . . . . . . . . . . . . . . . . 12 2.2 Fiber-Based Optical Frequency Comb . . . . . . . . . . . . . . . . . . 13 2.3 Negative Glow Discharge . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Extended Negative Glow Discharge . . . . . . . . . . . . . . . 14 2.3.2 Structure of Our Discharge Tube . . . . . . . . . . . . . . . . 14 2.4 Modulation Transfer Spectroscopy of I2 Stabilized Nd:YAG Laser . . 15 2.4.1 Hyper ne Structure of Iodine . . . . . . . . . . . . . . . . . . 16 2.4.2 Modulation Transfer Spectroscopy of I2 Stabilized . . . . . . . 17 2.5 Tunable Frequency O set Locking System . . . . . . . . . . . . . . . 24 2.6 Frequency Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Results 30 3.1 Procedure of Measurement . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Doppler Spectrum of R(1,0) Transition . . . . . . . . . . . . . . . . . 32 3.3 Sub-Doppler Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 Double Modulation . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Lineshape Model . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.3 Sub-Doppler Spectrum of R Branch & Q Branch . . . . . . . . 38 4 Conclusions 51 4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    [1] McCall, B. J. & Oka, T. H+3
    {an ion with many talents. Science Magazine 287
    (5460), 1941{1942 (17 March 2000).
    [2] Oka, T. Chemistry, astronomy and physics of H+3
    . Philosophical Transactions of
    the Royal Society of London A: Mathematical, Physical and Engineering Sciences
    370, 4991{5000 (2012).
    [3] Oka, T. Observation of the infrared spectrum of H+3
    . Physical Reviw Letter 45,
    531{534 (1980).
    [4] Hodges, J. N., Perry, A. J., Jenkins, P. A., Siller, B. M. & McCall, B. J. Highprecision
    and high-accuracy rovibrational spectroscopy of molecular ions. The
    Journal of Chemical Physics 139 (2013).
    [5] Grussie, F. et al. (private communication) .
    [6] Chen, H.-C. High Resolution Saturation Absorption Spectroscopy of H+3
    Molecular
    Ion. Ph.D. thesis, National Tsing Hua University (2013).
    [7] van Herpen, M., Li, S., Bisson, S., Te Lintel Hekkert, S. & Harren, F. Tuning
    and stability of a continuous-wave mid-infrared high-power single resonant optical
    parametric oscillator. Applied Physics B 75, 329{333 (2002).
    [8] Hong, F.-L. et al. Portable I2-stabilized Nd : YAG laser for wavelength standards
    at 532 nm and 1064 nm. Proc. SPIE 3477, Recent Developments in Optical Gauge
    Block Metrology 3477 (1998).
    [9] Schunemann, U., Engler, H., Grimm, R., Weidemuller, M. & Zielonkowski, M.
    Simple scheme for tunable frequency o set locking of two lasers. Review of Sci-
    enti c Instruments 70, 242{243 (1999).
    [10] Deng, L. et al. Improvement to sellmeier equation for periodically poled LiNbO3
    crystal using mid-infrared di erence-frequency generation. Optics Communica-
    tions 268, 110 { 114 (2006).
    [11] Peng, J.-L., Liu, T.-A. & Shu, R.-H. Octave-spanning ber laser comb with 300
    mhz comb spacing for optical frequency metrology. Conference on Lasers and
    Electro-Optics/International Quantum Electronics Conference CTuK3 (2009).
    [12] De Lucia, F. C., Herbst, E., Plummer, G. M. & Blake, G. A. The production of
    large concentrations of molecular ions in the lengthened negative glow region of
    a discharge. The Journal of Chemical Physics 78, 2312{2316 (1983).
    [13] Amano, T. & Maeda, A. Double-modulation submillimeter-wave spectroscopy
    of HOC+ in the v2 excited vibrational state. Journal of Molecular Spectroscopy
    203, 140{144 (2000).
    [14] Hsiao, C.-Y. Estblishment of HeH+ Saturation Absorption Spectroscopy Measure-
    ment Setup. Master's thesis, National Tsing Hua University (2000).
    [15] Robertsson, L. et al. International comparison of 127I2 - stabilized frequencydoubled
    Nd : YAG lasers between the BIPM, the NRLM and the BNM 􀀀 INM,
    october 2000. Metrologia 38, 567 (2001).
    [16] Cordiale, P., Galzerano, G. & Schnatz, H. International comparison of two iodinestabilized
    frequency-doubled Nd : YAG lasers at  = 532 nm. Metrologia 37, 177
    (2000).
    [17] Hong, F.-L., Ishikawa, J., Onae, A. & Matsumoto, H. Rotation dependence
    of the excited-state electric quadrupole hyper ne interaction by high-resolution
    laser spectroscopy of 127I2. Journal of the Optical Society of America B 18,
    1416{1422 (2001).
    [18] Fang, H.-M. Studies of Laser Stabilization Using Molecular Iodine. Ph.D. thesis,
    National Chiao Tung University (July 2005).
    [19] Jaatinen, E., Hopper, D. J. & Back, J. Residual amplitude modulation mechanisms
    in modulation transfer spectroscopy that use electro-optic modulators.
    Measurement Science and Technology 20, 025302 (2009).
    [20] Shirley, J. H. Modulation transfer processes in optical heterodyne saturation
    spectroscopy. Optical Letter 7, 537{539 (1982).
    [21] Hall, J. L., Hollberg, L., Baer, T. & Robinson, H. G. Optical heterodyne saturation
    spectroscopy. Applied Physics Letters 39, 680{682 (1981).
    [22] Quinn, T. J. Practical realization of the de nition of the metre, including recommended
    radiations of other optical frequency standards. Metrologia 40, 103{133
    (2003).
    [23] Gillespie, L. J. & Fraser, L. H. D. The normal vapor pressure of crystalline iodine.
    Journal of the American Chemical Society 58, 2260{2263 (1936).
    [24] Liao, C.-C. et al. Precise frequency measurements of 127I2 lines in the wavelength
    region 750{780 nm. Journal of the Optical Society of America B 27, 1208{1214
    (2010).
    [25] Stephenson, S. K. & Saykally., R. J. Velocity modulation spectroscopy of ions.
    Chemical Review 105, 3220{3234 (2005).
    [26] Smith, P. W. & Hansch, R. Cross-relaxation e ects in the saturation of the
    6328-a neon-laser line. Physical Review Letter 26, 740{743 (1971).
    [27] Wu, K.-Y. Precision Measurement of the 2-band of Triatomic Hydrogen Molec-
    ular Ion H+
    3 . Ph.D. thesis, National Tsing Hua University (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE