簡易檢索 / 詳目顯示

研究生: 林宇中
論文名稱: 平板熱管之可視化觀察與蒸發熱阻量測-不同工作流體與表面潤濕性之效應
Visualization and Measurement for Evaporator in Operating Flat-Plate Heat Pipes-Different Working Fluids and Wettabilities
指導教授: 王訓忠
Wong, Shwin-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 蒸發熱阻平板熱管潤濕性親水性
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用自行設計之可視化平板熱管,使用水、甲醇、丙酮三種不同工作流體,觀察與量測在100+200 mesh燒結銅網以及燒結不規則粉兩種毛細結構下其蒸發現象。在蒸發熱阻方面,三種工作流體並無太大差異,主要以液膜厚度為主導。臨界熱負載量兩種毛細皆水表現最佳、其次為甲醇、丙酮最差,此結果也與流體的figures of merit有直接相關。燒結銅網實驗過程中沸騰現象以丙酮表現最明顯,甲醇則只有少數情況下有觀察出些微液膜晃動,水則完全沒發生沸騰。而使用不規則粉並無預期促發激烈沸騰現象產生。
    藉由一維性的加熱面積實驗,證實加熱面積形狀對於熱管蒸發熱阻與臨界熱負載量有直接關係。在熱管臨界熱負載量定性分析方面,容易受到加熱面形狀、填充量、毛細結構、工作流體等因素而影響。而就算減少加熱面形狀及填充量影響,其分析結果與實驗結果始終有極大差距。
    藉由銅表面氧化而降低表面潤濕度研究對熱管蒸發性能影響。發現蒸發熱阻在三種工作流體並無太大改變。但臨界熱負載量,水卻因接觸角增加而導致毛細半徑增加,毛細力減弱,熱負載力也因而降低,而甲醇、丙酮則無明顯影響。


    摘要 1 目錄 2 圖表目錄 4 第一章 緒論 7 1.1 研究背景 7 1.2 熱管工作原理 7 1.3 研究動機與目的 10 第二章 文獻回顧 14 2.1 平板熱管毛細蒸發區之熱傳模式 14 2.2 毛細結構對蒸發熱阻之影響 16 2.3 薄膜蒸發熱傳 19 2.4 工作流體之影響 23 第三章 實驗方法 30 3.1 實驗設計 30 3.2 實驗架構與配置 33 3.3 實驗步驟 34 3.3.1 前置作業流程 34 3.3.2 實驗流程 35 3.4 實驗數據計算方式 36 第四章 實驗結果與討論 42 4.1不同工作流體性能比較-100+200 mesh毛細 42 4.1.1 不同填充量下各工作流體之蒸發特性 42 4.1.2 三種工作流體之蒸發熱阻比較 45 4.1.3 三種工作流體之臨界熱負載量比較 47 4.2不同工作流體性能比較-不規則粉 47 4.2.1不同工作流體蒸發熱阻與臨界熱負載量比較 48 4.2.2燒結不規則粉與100+200 mesh燒結銅網比較 49 4.3一維性之加熱面 50 4.4熱管臨界熱負載量定性分析 51 4.5銅表面親水性 53 第五章 結論 67 參考文獻 69

    [1] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
    [2] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
    [3] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
    [4] H. Wang, S.V. Garimella, J.Y. Murthy, Characteristics of an evaporating thin film in a microchannel, Int. J. Heat Mass Transfer 50 (2007) 3933–3942
    [5] R. Bertossi,V. Ayel, C. Romestant, Y. Bertin, Z. Lataoui, Modeling of transfer in the microregion in axially grooved heat pipes, comparison of fluid performances, Heat Pipe Sci. Tech. 1 (2010) 99-112.
    [6] A.J. Jiao, H.B. Ma, J.K. Critser, Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves, Int. J. Heat Mass Transfer 50 (2007) 2905–2911
    [7] W. Qu, T. Ma , J. Miao, J. Wang, Effects of radius and heat transfer on the profile of evaporating thin liquid film and meniscus in capillary tubes, Int. J. Heat Mass Transfer 45 (2002) 1879–1887
    [8] S.-K. Wee, K.D. Kihm, K.P. Hallinan, Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film, Int. J. Heat Mass Transfer 48 (2005) 265–278
    [9] A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, 1995.
    [10] C. Li, G.P. Peterson, Y. Wang, Evaporation/boiling in thin capillary wicks (1)—wick thickness effects, ASME J. Heat Transfer 128 (2006) 1312-1319 (8 pp.).
    [11] C. Li, G.P. Peterson, Evaporation/boiling in thin capillary wicks(2)—effects of volumetric porosity and mesh size, ASME J. Heat Transfer 128 (2006) 1320-1328 (9 pp.).
    [ 12] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME J. Heat Transfer 127 (2005) 165-170 (6 pp.).
    [ 13] D. Khrustalev, A. Faghri, Thermal characteristics of conventional and flat miniature axially grooved heat pipes, ASME J. Heat Transfer 117 (1995) 1048-1054 (7 pp.).
    [ 14] L. Lin, R. Ponnappan, J. Leland, High performance miniature heat pipe, Int. J. Heat Mass Transfer 45 (2002) 3131-3142.
    [ 15] J.-Y. Chang, R. S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME J. Heat Transfer 130 (2008) 121501 (9 pp.).
    [ 16] J-Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME Journal of Heat Transfer 130 (2008) 121501. (9 pp.)
    [17] S.-C. Wong, Y.-H. Kao, Visualization and performance measurement of operating mesh-wicked heat pipes, Int. J. Heat Mass Transfer 51 (2008) 4249-4259.
    [ 18] J. Jiang, Y.-X. Tao, L. Byrd, Evaporative heat transfer from thin liquid film on a heated cylinder, Int. J. Heat Mass Transfer 43 (2000) 85-99.
    [ 19] H.K. Dhavaleswarapu, S.V. Garimella, H.Y. Murthy, Microscale temperature measurements near the triple line of an evaporating thin liquid film, ASME J. Heat Transfer 131 (2009) 061501 (7 pp.).
    [ 20] C. Hohmann, P. Stephan, Microscale temperature measurement at an evaporation liquid meniscus, Experimental Thermal Fluid Sci. 26 (2002) 157-162.
    [ 21] H. Wang, J.Y. Murthy, S.V. Garimella, Transport from a volatile meniscus inside an open microtube, Int. J. Heat Mass Transfer 51 (2008) 3007–3017.
    [ 22] P. Chamarthy, H.K. Dhavaleswarapu, S.V. Garimella, H.Y. Murthy, S.T. Wereley, Visualization of convection patterns near an evaporating meniscus using μPIV, Exp Fluids 44 (2008) 431–438.
    [ 23] S. Lips, F Lefévre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe, Int. J. Thermal Sci. 48 (2008) 1273-1278.
    [ 24] J.S. Go, Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling, Sensors and Actuators A 121 (2005) 549–556.
    [ 25] Y. J. Lin, K.S. Hwang, Effects of Particle Size and Particle Size Distribution on Heat Dissipation of Heat Pipes with Sintered Porous Wicks, Materials Transactions, Vol. 40, No. 9 (2009) pp. 2071 to 2078.
    [ 26] Y. J. Lin, K.S. Hwang, Effects of Powder Shape and Processing Parameters on Heat Dissipation of Heat Pipes with Sintered Porous Wicks, Materials Transactions, Vol. 50, No. 10 (2009) pp. 2427 to 2434.
    [ 27] I.Y. Kim, P.C. Wayner, Shape of an evaporating completely wetting extended meniscus, J. Thermophys. Heat Transfer 10 (1996) 320-325.
    [ 28] S.J.S. Morris, Contact angles for evaporating liquids predicted and compared with existing experiments, J. Fluid Mech. 432 (2001) 1-30.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE