研究生: |
林宇中 |
---|---|
論文名稱: |
平板熱管之可視化觀察與蒸發熱阻量測-不同工作流體與表面潤濕性之效應 Visualization and Measurement for Evaporator in Operating Flat-Plate Heat Pipes-Different Working Fluids and Wettabilities |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 蒸發熱阻 、平板熱管 、潤濕性 、親水性 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用自行設計之可視化平板熱管,使用水、甲醇、丙酮三種不同工作流體,觀察與量測在100+200 mesh燒結銅網以及燒結不規則粉兩種毛細結構下其蒸發現象。在蒸發熱阻方面,三種工作流體並無太大差異,主要以液膜厚度為主導。臨界熱負載量兩種毛細皆水表現最佳、其次為甲醇、丙酮最差,此結果也與流體的figures of merit有直接相關。燒結銅網實驗過程中沸騰現象以丙酮表現最明顯,甲醇則只有少數情況下有觀察出些微液膜晃動,水則完全沒發生沸騰。而使用不規則粉並無預期促發激烈沸騰現象產生。
藉由一維性的加熱面積實驗,證實加熱面積形狀對於熱管蒸發熱阻與臨界熱負載量有直接關係。在熱管臨界熱負載量定性分析方面,容易受到加熱面形狀、填充量、毛細結構、工作流體等因素而影響。而就算減少加熱面形狀及填充量影響,其分析結果與實驗結果始終有極大差距。
藉由銅表面氧化而降低表面潤濕度研究對熱管蒸發性能影響。發現蒸發熱阻在三種工作流體並無太大改變。但臨界熱負載量,水卻因接觸角增加而導致毛細半徑增加,毛細力減弱,熱負載力也因而降低,而甲醇、丙酮則無明顯影響。
[1] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
[2] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
[3] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
[4] H. Wang, S.V. Garimella, J.Y. Murthy, Characteristics of an evaporating thin film in a microchannel, Int. J. Heat Mass Transfer 50 (2007) 3933–3942
[5] R. Bertossi,V. Ayel, C. Romestant, Y. Bertin, Z. Lataoui, Modeling of transfer in the microregion in axially grooved heat pipes, comparison of fluid performances, Heat Pipe Sci. Tech. 1 (2010) 99-112.
[6] A.J. Jiao, H.B. Ma, J.K. Critser, Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves, Int. J. Heat Mass Transfer 50 (2007) 2905–2911
[7] W. Qu, T. Ma , J. Miao, J. Wang, Effects of radius and heat transfer on the profile of evaporating thin liquid film and meniscus in capillary tubes, Int. J. Heat Mass Transfer 45 (2002) 1879–1887
[8] S.-K. Wee, K.D. Kihm, K.P. Hallinan, Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film, Int. J. Heat Mass Transfer 48 (2005) 265–278
[9] A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, 1995.
[10] C. Li, G.P. Peterson, Y. Wang, Evaporation/boiling in thin capillary wicks (1)—wick thickness effects, ASME J. Heat Transfer 128 (2006) 1312-1319 (8 pp.).
[11] C. Li, G.P. Peterson, Evaporation/boiling in thin capillary wicks(2)—effects of volumetric porosity and mesh size, ASME J. Heat Transfer 128 (2006) 1320-1328 (9 pp.).
[ 12] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME J. Heat Transfer 127 (2005) 165-170 (6 pp.).
[ 13] D. Khrustalev, A. Faghri, Thermal characteristics of conventional and flat miniature axially grooved heat pipes, ASME J. Heat Transfer 117 (1995) 1048-1054 (7 pp.).
[ 14] L. Lin, R. Ponnappan, J. Leland, High performance miniature heat pipe, Int. J. Heat Mass Transfer 45 (2002) 3131-3142.
[ 15] J.-Y. Chang, R. S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME J. Heat Transfer 130 (2008) 121501 (9 pp.).
[ 16] J-Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME Journal of Heat Transfer 130 (2008) 121501. (9 pp.)
[17] S.-C. Wong, Y.-H. Kao, Visualization and performance measurement of operating mesh-wicked heat pipes, Int. J. Heat Mass Transfer 51 (2008) 4249-4259.
[ 18] J. Jiang, Y.-X. Tao, L. Byrd, Evaporative heat transfer from thin liquid film on a heated cylinder, Int. J. Heat Mass Transfer 43 (2000) 85-99.
[ 19] H.K. Dhavaleswarapu, S.V. Garimella, H.Y. Murthy, Microscale temperature measurements near the triple line of an evaporating thin liquid film, ASME J. Heat Transfer 131 (2009) 061501 (7 pp.).
[ 20] C. Hohmann, P. Stephan, Microscale temperature measurement at an evaporation liquid meniscus, Experimental Thermal Fluid Sci. 26 (2002) 157-162.
[ 21] H. Wang, J.Y. Murthy, S.V. Garimella, Transport from a volatile meniscus inside an open microtube, Int. J. Heat Mass Transfer 51 (2008) 3007–3017.
[ 22] P. Chamarthy, H.K. Dhavaleswarapu, S.V. Garimella, H.Y. Murthy, S.T. Wereley, Visualization of convection patterns near an evaporating meniscus using μPIV, Exp Fluids 44 (2008) 431–438.
[ 23] S. Lips, F Lefévre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe, Int. J. Thermal Sci. 48 (2008) 1273-1278.
[ 24] J.S. Go, Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling, Sensors and Actuators A 121 (2005) 549–556.
[ 25] Y. J. Lin, K.S. Hwang, Effects of Particle Size and Particle Size Distribution on Heat Dissipation of Heat Pipes with Sintered Porous Wicks, Materials Transactions, Vol. 40, No. 9 (2009) pp. 2071 to 2078.
[ 26] Y. J. Lin, K.S. Hwang, Effects of Powder Shape and Processing Parameters on Heat Dissipation of Heat Pipes with Sintered Porous Wicks, Materials Transactions, Vol. 50, No. 10 (2009) pp. 2427 to 2434.
[ 27] I.Y. Kim, P.C. Wayner, Shape of an evaporating completely wetting extended meniscus, J. Thermophys. Heat Transfer 10 (1996) 320-325.
[ 28] S.J.S. Morris, Contact angles for evaporating liquids predicted and compared with existing experiments, J. Fluid Mech. 432 (2001) 1-30.