簡易檢索 / 詳目顯示

研究生: 王文中
Wang, Wen-Chung
論文名稱: 五軸CNC工具機轉動軸之誤差量測
Errors measurement of rotary axes in five-axis CNC machine tools
指導教授: 雷衛台
口試委員: 范光照
雷衛台
宋震國
陳政雄
李碩仁
蔡孟勳
徐永源
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 92
中文關鍵詞: 五軸工具機轉動軸雙球桿循圓量測
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出針對五軸CNC工具機中轉動軸之動態與靜態誤差量測方法,針對動態誤差,使用量具為雙球桿量測儀,搭配線性軸轉動軸與雙轉動軸同動循圓量測方法,成功量得五軸CNC工具機中轉動軸之動態誤差。所提出之方法保證循圓量測過程中,轉動軸反向時,線性軸之軸向量測靈敏度為零,若只考慮線性軸之線性軸向誤差,則轉動軸反向時所量得之誤差全由轉動軸貢獻。
    本方法具有一般性,任何構型之五軸CNC工具機皆可使用本方法之推導邏輯得出適合之線性軸轉動軸或雙轉動軸同動循圓路徑,本方法計算出之測試路徑可使用多線段(G01)之NC檔案輸入CNC控制器中進行量測,可應用於任何具有路徑預視功能之CNC控制器上。另外,本方法所量得之純動態誤差是由總成量測誤差減去定位量測誤差所得,可迴避安裝量具時之安裝誤差。模擬與實驗結果證明本方法可量出五軸CNC工具機中轉動軸之動態誤差。
    運用本論文提出之線性軸轉動軸同動循圓量測方法,可檢測轉動軸全行程之反向誤差,透過多次量測與適當之循圓路徑安排,可檢測出五軸CNC工具機中轉動軸之全行程反向誤差。
    針對五軸CNC工具機中轉動軸之靜態誤差,本論文中使用六維運動量測系統量得五軸CNC工具機中2轉動軸共8項靜態誤差,並利用CNC控制器中之靜態誤差補償功能,由不同量測方法驗證所量得之結果,實驗結果顯示使用六維運動量測系統可成功量出五軸CNC工具機轉動軸之靜態誤差。


    1 簡介 1 2 文獻回顧 2 2.1 工具機幾何誤差 2 2.1.1 幾何誤差模型 2 2.1.2 幾何誤差量測 3 2.1.3 幾何誤差補償 4 2.2 研究目的 5 3 五軸工具機誤差量測模型 6 3.1 齊性轉換矩陣 6 3.2 五軸工具機幾何模型 7 3.3 五軸工具機幾何誤差模型 10 3.4 雙球桿桿長變化模型 13 4 循圓路徑設計 15 4.1 XC軸循圓路徑 16 4.1.1 路徑定義 16 4.1.2 量測靈敏度 19 4.1.3 C軸反向位置 22 4.2 ZA軸循圓路徑 25 4.2.1 路徑定義 25 4.2.2 量測靈敏度 28 4.2.3 A軸反向位置 31 4.3 AC軸循圓路徑 34 4.3.1 路徑計算 34 4.3.2 AC軸反向位置 37 4.3.3 量測靈敏度 39 4.4 C軸全行程量測 41 5 轉動軸動態誤差模擬 45 5.1 驅動軸動態模型 45 5.2 XC軸循圓模擬結果 48 5.3 ZA軸循圓模擬結果 51 5.4 AC軸循圓模擬結果 53 5.5 C軸全行程量測模擬結果 54 5.6 轉動軸靜態誤差模擬結果 56 6 量測系統實現與實機量測 62 6.1 雙球桿循圓誤差量測系統 62 6.2 實機量測結果 65 6.2.1 XC軸循圓量測結果 66 6.2.2 ZA軸循圓量測結果 70 6.2.3 AC軸循圓量測結果 74 6.2.4 C軸全行程量測結果 78 7 靜態誤差量測 79 8 結論 88

    [1] Y. Kakino, Y. Ihara, A. Shinohara, Accuracy Inspection of NC Machine Tools by Double Ball Bar Method, Hanser publishers, Munich, Germany, 1993.
    [2] M. Weck, Handbook of machine tools volume 2: Construction and mathematical analysis, John Wiley & Sons, 1984.
    [3] J. S. Chen, J. X. Yuan, J. Ni and S. M. Wu, “Real-time compensation of time-variant volumetric error on a machining center”, Journal of Engineering for Industry, Transactions of the ASME, 115(4), 472-479, 1993.
    [4] N. A. Barakat, M. A. Elbestawi, A. D. Spence, “Kinematic and geometric error compensation of a coordinate measuring machine”, International Journal of Machine Tools and Manufacturing, 40(6), 833-850, 2000.
    [5] W. Knapp, “Measurement uncertainty and machine tool testing”, CIRP Annals – Manufacturing Technology, 51(1), 459-462, 2002.
    [6] A. H. Slocum, Precision Machine Design, Prentice Hall, Englewood Cliffs, 1992.
    [7] K. F. Eman, B.T. Wu, M.F. DeVries, “Generalized geometric error model for multi-axis machines”, CIRP Annals, 36(1), 253-256, 1987.
    [8] A. K. Srivastava, S. C. Veldhuis, M. A. Elbestawit, “Modeling geometric and thermal errors in a five-axis CNC machine tool”, International Journal of Machine Tools and Manufacturing 35(9), 1321-1337, 1995.
    [9] V. S. B.Kiridena, P. M. Ferreira, “Kinematic modeling of quasistatic errors of three-axis machining centers”, International Journal of Machine Tools and Manufacturing 34(1), 85-100, 1994.
    [10] W. T. Lei, Y. Y. Hsu, “Accuracy test of five-axis CNC macine tool with 3D probe-ball. Part I: design and modeling”, International Journal of Machine Tools and Manufacturing 42, 1153-1162, 2002.
    [11] S. Ibaraki, W. Knapp, “Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools: A Review”, International Journal of Automation Technology, 6(2), 110-124, 2012.
    [12] M. Weck, Handbook of machine tools volume 4: Metrological Analysis and Performance Test, John Wiley & Sons, 1984.
    [13] K. Lau, Q. Ma, X. Chu, Y. Liu and S. Olson, An advanced 6-degree-of-freedom laser system for quick CNC machine and CMM error mapping and compensation, Automated Precision Inc., Gaithersburg, MD 20879 U.S.A., 2000.
    [14] W. Schroeder, A new 6D measuring device for rotary table calibration, Dr. Johannes Heidenhein GmbH, Germany, 2003.
    [15] W. Knapp, “Testing NC machine tools with the circular test”, Proceedings of the International Machine Tool Design and Research Conference 25th, 141-147, 1985.
    [16] ISO 230-4, Test Code for Machine Tools-Part 4: Circular tests for numerically controlled machine tools, 2005.
    [17] 余志文, ”六維運動及誤差量測系統”,國立清華大學動力機械工程學系碩士論文, 2008.
    [18] J.B. Bryan, “A simple method for testing measuring machines and machine tools. Part 1: principle and applications”, Precision Engineering 4(2), 61-69, 1982.
    [19] Y. Kakino, Y. Ihara, Y. Nakatsu, “The measurement of motion errors of NC machine tools and diagnosis of their origins by using telescoping magnetic ballbar method”, CIRP Annals 36(1), 377-380, 1987.
    [20] W.T. Lei, M.P. Sung, W.L. Liu, Y.C. Chuang, “Double ball bar test for the rotary axes of five-axis CNC machine tools”, International Journal of Machine Tools & Manufacture 47, 273-285, 2007.
    [21] W.T. Lei, I.M. Paung, C.C. Yu, “Total ballbar dynamic tests for five-axis CNC machine tools”, International Journal of Machine Tools & Manufacture 49, 488-499, 2009
    [22] S. Sakamoto, I. Inasaki, H. Tsukamoto, T. Ichikizaki, “Identification of alignment errors in five-axis machining centers using telescoping ball bar”, Transactions of the Japan Society of Mechanical Engineers PartC 63(605), 262-267, 1997.
    [23] M. Tsutsumi, A. Saito, “Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting-rotary by simultaneous four-axis control movements”, International Journal of Machine Tools and Manufacture 44, 1333-1342, 2004.
    [24] M. Tsutsumi, A. Saito, “Identification and compensation of systematic deviations particular to 5-axis machining centers”, International Journal of Machine Tools and Manufacture 43, 711-780, 2003.
    [25] Y. Abbaszadeh-Mir, J. R. R. Mayer, G. Cloutier, C. Fortin, “Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telescoping magnetic ball-bar”, International Journal of Production Research 40(18), 4781-4797, 2002.
    [26] T. Matsushita, A. Matsubara, “Identification and Compensation of Geometric Errors in Five-axis Machine Tools with a Tilting Rotary Table Using Conic Trajectories Measured by Double Ball Bar”, Journal of Japan Society for Precision Engineering 77(6), 2011.
    [27] M. Sharif Uddin, S. Ibaraki, A. Matsubara, T. Matsushita, “Prediction and compensation of machining geometric errors of five-axis machine centers with kinematic errors”, Precision Engineering 33, 194-201, 2009.
    [28] S. Ibaraki, Y. Kakino, T. Akai, N. Takayama, I. Yamaji, K. Ogawa, “Identification of Motion Error Sources on Five-axis Machine Tools by Ball-bar Measurements (1st Report)”, Journal of Japan Society for Precision Engineering 76(3), 2010.
    [29] W.T. Lei, Y.Y. Hsu, “Error measurement of five-axis CNC machines with 3D probe-ball”, Journal of Materials Processing Technology 139(1-3), 127-133, 2003.
    [30] W.T. Lei, Y.Y. Hsu, “Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part II: Errors estimation”, International Journal of Machine Tools & Manufacture 42(10), 1163-1170, 2002.
    [31] W. T. Lei, Y. Y. Hsu, “Accuracy enhancement of five-axis CNC machines through real-time error compensation”, International Journal of Advanced Manufacturing Technology 43(9), 871-877, 2003.
    [32] S. Weikert, “R-Test, a new device for accuracy measurements on five axis machine tools”, CIRP Annals 53(1), 429-432, 2004.
    [33] S. Ibaraki, C. Oyama, H. Otsubo, “Construction of an error map of rotary axes on a five axis machining center by static R-test”, International Journal of Machine Tools and Manufacture 51, 190-200, 2011.
    [34] C. Hong, S. Ibaraki, C. Oyama, “Graphical presentation of error motions of rotary axes on a five-axis machine tool by static R-test with separating the influence errors of linear axes”, International Journal of Machine Tools & Manufacture 59, 24-33, 2012.
    [35] G.H.J. Florussen, H.A.M. Spaan, “Dynamic R-test for rotary tables on 5-axes machine tools”, Procedia CIRP 1, 536-539, 2012.
    [36] Y. Masashi, N. Hamabata, Y. Ihara, “Evaluation of linear axis motion error of machine tools using an R-test device”, Procedia CIRP 14, 311-316, 2014.
    [37] P. Turek, J. Jedrzejewski, W. Modrzycki, “Methods of machine tool error compensation”, Journal of Machine Engineering 10(4), 5-25, 2010.
    [38] A. Koliskor, “Compensation for automatic-cycle machining errors”, Stanki Instrum, (5) 7-8, 1970.
    [39] Y.Y. Hsu ,S.S. Wang, “A new compensation method for geometry errors of five-axis machine tools”, International Journal of Machine Tools & Manufacture 47, 352-360, 2007.
    [40] A. W. Khan, W. Chen, “A methodology for systematic geometric error compensation in five-axis machine tools”, International Journal of Advanced Manufacturing Technology 53, 615-628, 2011.
    [41] S. Zhu, G. Ding, S. Qin, J. Lei, L. Zhuang, K. Yan, “Integrated geometric error modeling, identification and compensation of CNC machine tools”, International Journal of Machine Tools & Manufacture 52, 24-29, 2012.
    [42] R. Ramesh, M.A. Mannan, A.N. Poo, “Error compensation in machine tools - a review Part I: geometric, cutting-force induced and fixturedependent errors”, International Journal of Machine Tools & Manufacture 40, 1235-1256, 2000.
    [43] J. Mou, “Method of using neural networks and inverse kinematics for machine tools error estimation and correction”, Journal of Manufacturing Science and Engineering, Transactions of the ASME, 119(2), 247-254, 1997.
    [44] N. Jun, “CNC machine accuracy enhancement through real-time error compensation”, Journal of Manufacturing Science and Engineering, 119(4), 717-725, 1997.
    [45] 張凱翔, ”六維運動量測系統研發”, 國立清華大學動力機械工程學系碩士論文, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE