簡易檢索 / 詳目顯示

研究生: 柯富耀
Ko, Fu-Yao
論文名稱: 蜜蜂磁場導航的信息傳遞之研究
THE STUDY ON SIGNAL TRANSDUCTION OF MAGNETORECEPTION IN HONEYBEES(Apis mellifera)
指導教授: 李家維
Li, Chia-Wei
徐錦源
Hsu, Chin-Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: 蜜蜂磁場導航信息傳遞
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 已知蜜蜂能夠在腹節的營養細胞內沉積許多鐵顆粒,這些鐵顆粒內含有許多超順磁磁鐵奈米顆粒,有可能當作磁場之感應器。在本研究裡,我們研究蜜蜂如何感應磁場與傳遞訊息的路徑。利用共軛焦顯微鏡的數位化影像放大技術來觀察鐵顆粒外觀是否受磁場影響產生變化。透過共軛焦顯微鏡觀察處理過鈣離子指示劑之營養細胞內鈣離子的變動,以觀察鈣離子與外加磁場的關係。以上結果顯示鐵顆粒會受磁場影響產生膨脹與縮小現象,營養細胞內鈣離子則會受磁場影響而增高,但是當細胞骨架被抑制下,鈣離子則不受磁場影響。我們初步了解蜜蜂磁場導航的信息傳遞路徑是透過鐵顆粒受磁場作用產生形狀上的改變,接著牽動細胞骨架,造成細胞內鈣離子濃度變化,進而將信息傳遞至神經系統,開啟蜜蜂磁場導航的機制。


    Honeybees can deposit numerous iron granules in the trophocytes of ventral abdomen. These iron granules contain superparamagnetic magnetites, which seem to be magnetoreceptors. In this study, we investigate the pathway of the signal transduction of magnetoreception in honeybees (Apis mellifera.)The fluctuation of iron granules in size affected by additional magnetic field was monitored by digital amplification technique of confocal microscopy. The release of calcium ions in trophocytes affected by additional magnetic field was measured by confocal microscopy. The results show that additional magnetic field can induce the size of iron granules to shrink at the paralleled direction to magnetic field and to enlarge at the vertical direction. In addition, additional magnetic field can increase the release of calcium ions, which can be inhibited by microtubule-inhibitors (colchicine and taxol.) Our preliminary results show that the fluctuation in the size of iron granules can induce the relaxing and tensing of microtubules to trigger the release of calcium ions.

    第一章 緒 論 …………………………………………………………. 1 1.1 前言……………………………………………………….. 2 1.2 最佳的模式生物:蜜蜂 ………………………………… 3 1.3 生物礦化 ………………………………………………… 4 1.4 鐵之生物礦化 …………………………………………… 6 1.5 磁鐵礦之生物礦化 ……………………………………… 7 1.6 磁場感應 ………………………………………………… 9 1.7 蜜蜂的含鐵顆粒 ……………………………………….. 11 1.8 蜜蜂的超順磁磁鐵 …………………………………….. 13 1.9 超順磁磁鐵的磁場導航機制 ………………………….. 15 1.10 研究方向與動機 ……………………………………… 16 第二章 實驗材料及方法 ……………………………………………. 18 2.1 實驗材料 ……………………………………………….. 19 2.2 營養細胞之萃取 ……………………………………….. 19 2.3 營養細胞內鈣離子的測定 …………………………….. 20  2.3.1 鈣離子的指示劑 …………………………………... 20  2.3.2 培養含有鈣離子指示劑的營養細胞 ……………... 22  2.3.3 鈣離子的測定 ……………………………………... 23 2.4 細胞骨架抑制劑對於營養細胞內鈣離子的影響 …….. 23  2.4.1 細胞骨架抑制劑I:秋水仙素 ………………...…… 23  2.4.1.1 秋水仙素的作用機制 ……………...…………. 23  2.4.1.2 培養含有秋水仙素的營養細胞 ………….…... 25   2.4.1.3 鈣離子的測定 ………………………………… 25  2.4.2 細胞骨架抑制劑II:太平洋紫杉醇……………… 25   2.4.2.1 太平洋紫杉醇的作用機制 …………….……... 25   2.4.2.2 培養含有太平洋紫杉醇的營養細胞 …...……. 26   2.4.2.3 鈣離子的測定 ………………………………… 27 2.5 觀察營養細胞內鐵顆粒分佈的情形 ………………….. 27  2.5.1 鐵氰化鉀 …………………………………………... 27  2.5.2 培養含有鐵氰化鉀的營養細胞 …………………... 28  2.5.3 營養細胞內鐵顆粒的觀察 ………………………... 28 2.6 外加磁場 ……………………………………………….. 29 2.7 雷射掃描共軛焦顯微鏡 ……………………………….. 29 第三章 實驗結果 ……………………………………………………. 31 3.1 概述 …………………………………………………….. 32 3.2 磁場作用下營養細胞內鐵顆粒的超順磁現象 ……….. 32  3.2.1 處理過鐵氰化鉀的營養細胞 ……………………... 33  3.2.2 未處理任何藥劑的營養細胞 ……………………... 34 3.3 磁場對於營養細胞內鈣離子的影響 ………………….. 35 3.4 細胞骨架抑制劑作用下磁場對於營養細胞內 鈣離子的影響 …………………………………………... 36  3.4.1 抑制劑I:秋水仙素 ……...………………………… 36  3.4.2 抑制劑II:太平洋紫杉醇 ……….………………… 36 3.5 移除磁場作用下營養細胞內鈣離子的影響 ………….. 37  3.5.1 外加磁場作用60秒後的影響 …………………….. 37  3.5.2 外加磁場作用120秒後的影響 …………………… 38  3.5.3 磁場對於營養細胞內鈣離子的最大表現量 ……... 39 3.6 磁場對於脂肪細胞內鈣離子的影響 ………………….. 39  3.6.1 第3.3節中營養細胞與脂肪細胞的差異 ………… 40  3.6.2 第3.4節中營養細胞與脂肪細胞的差異 ………… 40  3.6.3 第3.5節中營養細胞與脂肪細胞的差異 ………… 41 第四章 討 論 ………………………………………………………... 44 4.1 螢光強度數據分析 …………………………………….. 45 4.2 鐵顆粒的超順磁現象 ………………………………….. 45 4.3 磁場對於鈣離子的影響 ……………………………….. 57 4.4 細胞骨架在鈣離子訊號上扮演的角色 ………...……... 48 4.5 移除磁場後鈣離子的影響 …………………………….. 49 4.6 脂肪細胞對實驗觀察的影響 ………………………….. 51 4.7 鈣離子的來源 ………………………………………….. 52 4.8 受磁場作用產生鈣離子變動的其他範例 …………….. 53 4.9 造成鈣離子變動的其他範例 ………………………….. 54 4.10 後續實驗的研究方向 ………………………………… 55 第五章 圖 說 ………………………………………………………... 56 參考文獻 ……………………………………………………………... 86

    Bianchi, M.G., B.M. Rotoli, V. Dall’Asta, G.C. Gazzola, R. Gatti, and O. Bussolati. 2006. PKC-dependent stimulation of EAAT3 glutamate transporter does not require the integrity of actin cytoskeleton. Neurochem Int 48: 341-349.
    Blakemore, R. 1975. Magnetotactic bacteria. Science 190: 377-9.
    Boles, L.C. and K.J. Lohmann. 2003. True navigation and magnetic maps in spiny lobsters. Nature 421: 60-3.
    Camlitepe, Y. and D.J. Stradling. 1995. Wood ants orient to magnetic fields. Proc R Soc Lond B 261: 37-41.
    Carson, J.J., F.S. Prato, D.J. Drost, L.D. Diesbourg, and S.J. Dixon. 1990. Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells. Am J Physiol Cell Physiol 259: C687-C692.
    De Jong, D. 1982. The orientation of comb-building by honeybees. J Comp Psysiol 147: 495-501.
    Deutschlander, M.E., S.C. Borland, and J.B. Philips. 1999. Extraocular magnetic compass in newts. Nature 400: 324-5.
    Diebel, C.E., R. Proksch, C.R. Green, P. Neilson, and M.M. Walker. 2000. Magnetite defines a vertebrate magnetoreceptor. Nature 406: 299-302.
    El-Jaick, L.J., D. Acosta-Avalos, D.M. de Souza Esquivel, E. Wajnberg, and M.P. Linhares. 2001. Electron paramagnetic resonance study of honeybee Apis mellifera abdomens. Eur Biophys J 29: 579-86.
    Frankel, R.B. and R.P. Blakemore. 1984. Precipitation of Fe3O4 in magnetotactic bacteria. Phil Trans R Soc Lond B 304: 567-574.
    Frankel, R.B., R.P. Blakemore, and R.S. Wolfe. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203: 1355-1356.
    Gee, K.R., K.A. Brown, W-N.U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson. 2000. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27: 97-106.
    Gorby, Y.A., T.J. Beveridge, and R.P. Blakemore. 1988. Characterization of the bacterial magnetosome membrane. J Bacteriol 170: 834-41.
    Gould, J.L., J.L. Kirschvink, K.S. Deffeyes, and M.L. Brines. 1980. Orientation of demagnetized bees. J Exp Biol 86: 1-8.
    Haskew-Layton, R.E., A.A. Mongin, and H.K. Kimelberg. 2005. Hydrogen peroxide poteneiates volume-sensitive excitatory amino acid release via a mechanism involving Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 280: 3548-3554.
    Hsu, C.-Y. 2006 Purification of iron granules in the trophocytes in honeybees (Apis mellifera). (unpublished)
    Hsu, C.-Y. and C.-W. Li. 1993. The ultrastructure and formation of iron granules in the honeybee (Apis mellifera). J Exp Biol 180: 1-13.
    -. 1994. Magnetoreception in honeybees. Science 265: 95-97.
    Hsu, C.-Y., J.-T. Lue, S.-F. Tseng, C.-S. Ng, and C.-W. Li. 2006a. Superparamagnetic magnetite in the iron granules of honeybees (Apis mellifera). (unpublished)
    Hsu, C.-Y., F.-Y. Ko, C.-W. Li, and K.-T. Fann. 2006b. Cellular and behavior evidences on magnetoreception in honeybees (Apis mellifera). (unpublished)
    Kirschvink, J.L. 1980. South-seeking magnetic bacteria: short communications. J Exp Biol 86: 345.
    Kirschvink, J.L. 1981. The horizontal magnetic dance of the honeybee is compatible with a single-domain ferromagnetic magnetoreceptor. Biosystems 14: 193-203.
    Kirschvink, J.L. and J.W. Hagadorn. 2000. 10. A grand unified theory of biomineralization. In The Biomineralisation of Nano- and Micro-Structures (ed. E.Bauerlein), pp. 139-150. Wiley-VCH Verlag GmbH, Weinheim, Germany.
    Kirschvink, J.L. and H.A. Lowenstam. 1979. Mineralization and magnteization of chiton teeth: paleomagnetic, sedimentologic and biologic implications of organic magnetite. Earth Planet Sci Lett 44: 193-204.
    Kirschvink, J.L. and A.K. Kirschvink. 1991. Is geomagnetic sensitivity real? Replication of the Walker-Bitterman magnetic conditioning experiment in honeybee. Amer Zool 31: 169-185.
    Kirschvink, J.L. and M.M. Walker, 1995. Honeybees and magnetoreception. Science 269: 1888-1890.
    Kirschvink, J.L. and M.M. Walker, S.-B.R. Chang, A.E. Dizon, and K.A. Peterson. 1985. Chains of single-domain magnetite particles in Chinook salmon, Oncorhynchus tshawytscha. J Comp Physiol A 157: 375-381.
    Kopp, B. 2001. Biomineralization in magnetotactic bacteria. College papers at the university of Chicago.
    Krause, K.H., K.P. Campbell, M.J. Welsh, and D.P. Lew. 1990. The calcium signal and neutrophil activation. Clin Biochem 23: 159-166.
    Kroger, N., G. Lehmann, R. Rachel, and M. Sumper. 1997. Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. Eur J Biochem 250: 99-105.
    Kuterbach, D.A. and B. Walcott. 1986a. Iron-containing cells in the honey-bee (Apis mellifera). I. Adult morphology and physiology. J Exp Biol 126: 375-87.
    -. 1986b. Iron-containing cells in the honey-bee (Apis mellifera). II. Accumulation during development. J Exp Biol 126: 389-401.
    Kuterbach, D.A., B. Walcott, R.J. Reeder, and R.B. Frankel. 1982. Iron-containing cells in the honey bee (Apis mellifera). Science 218: 695-697.
    Li, C.-W., T.-S. Chin, and S.-H. Huang. 1989. Growth of chiton teeth evidenced from magnetic measurment and microstructure characterization. IEEE Trans Magnet 25: 3818-3820.
    Lindauer, M. and H. Martin. 1968. Die Schwereorientatierun der Bienen unter dem Einfluss der Erdmagnetfelds. Zeitschrift der Vergleichende Physiologie 60: 219-243.
    Lodish, H., A. Berk, P. Matsukaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L. Zipursky, and J. Darnell. 2003. Molecular Cell Biology (5th edition), pp. 174. W. H. Freeman and Company press, New York.
    Lohmann, K.J., S.D. Cain, S.A. Dodge, and C.M. Lohmann. 2001. Regional magnetic fields as navigational markers for sea turtles. Science 294: 364-6.
    Lohmann, K.J. and S. Johnsen. 2000. The neurobiology of magnetoreception in vertebrate animals. Trends Neurosce 23: 153-9.
    Lowenstam, H.A. 1962. Magnetite in denticle capping in recent chitons (Polylacophora). Geol Soc Am Bull 73: 435.
    Lowenstam, H.A. 1967. Lepidocrocite, an apatite mineral and magnetite in teeth of chitons (Polyplacophora). 156: 1373-1375.
    Lowenstam, H.A. 1981. Moneral formed by organisms. Science 211: 1126-1131.
    Lowenstam, H.A. and J.L. Kirschvink. 1985. Iron biomineralization: a geobiological perspective. In Magnetite biomineralization and magnetoreception in organisms: A new biomagnetism. (ed. by J.L. Kirschvink, D.S. Jones, and B.J. MacFadden), pp. 4-5. Plenum press, New York.
    Mann, S. 1987. Biomineralization of iron oxides. Chem Britain 23: 137-140.
    Mann, S., C.C. Perry, J. Webb, B. Luke, and R.J.P. Williams. 1986. Structure, morphology, composition and organization of biogenci minerals in limpet teeth. Proc R Soc Lond B 227: 179-190.
    Mann, S., N.H. Sparks, M.M. Walker, and J.L. Kirschvink. 1988. Ultrastructrue, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: implications for magnetoreception. J Exp Biol 140: 35-49
    Martin, H. and M. Lindauer. 1977. Der Einfluss der Erdagnetgeld und die Schwerorientierung der Honigbiene. J Comp Physiol 122: 145-187.
    Mathews, C.K., K.E. van Holde, K.G. Ahern. 1999. Biochemistry (3th edition), pp. 263-264. Addison Wesley Longman press, San Francisco.
    Mattsson, M.O., E. Lindstrom, M. Still, P. Lindstrom, K.H. Mild, and E. Lundgren. 2001. [Ca2+]i rise in Jurkat E6-1 cell lines from different sources as a response to 50 Hz magnetic field exposure is a reproducible effect and independent of polylysine treatment. Cell Biol Int 25: 901-907.
    Nesson, M.H. 1995. Honeybees and magnetoreception. Science 269: 1889-1890.
    Nichol, H. and M. Locke. 1995. Honeybees and magnetoreception. Science 269: 1888-1889.
    Pelletier, P.S. and J. Caventon. 1982. J Ann Chim Phys 14: 69.
    Safarik, I. And M. Safarikova. 2002. Magnetic nanoparticles and biosciences. Monatshefte Fur Chemie 133: 737-759.
    Sakai, Y. and T. Motomiya. 1990. Possible mechanism of biomagnetic sense organ extracted from sockeye salmon. IEEE Transact. Magnetics 26: 1554-1556.
    Schuler, D. and R.B. Frankel. 1999. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52: 464-73.
    Snodgrass, R.E. 1984. Anatomy of the honey bee, pp. 136-145. Cornell University press, London.
    St Pierre, T.G., S. Mann, J. Webb, D.P.E. Dickson, N.W. Runham, and R.J.P. Williams. 1986. Iron oxide biomineralization in the radula teeth of the limpet Patella vulgata: mossbauer spectroscopy and high resolution transmission electron microscopy studies. Proc R Soc Lond B 228: 31-42.
    Torres de Araujo, F.F., M.A. Pires, R.B. Frankel, and C.E.M. Bicudo. 1985. Magnetite and magnetotaxis in alage. Biophys J 50: 375-378.
    Towe, K.M. and H.A. Lowenstam. 1967. Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (mollusca). J Ultrastruct Res 17: 1-13.
    Towe, K.M. and T.T. Moench. 1981. Electron-optical characterization of bacterial magnetite. Earth Planet Sci Lett 52: 231-220.
    Tsien, R.Y. and T.J. Rink. 1980. Neutral carrier ion selective microelectrodes for measurements of intracellular free calcium. Biochimica et Biophysica Acta 599: 623-638.
    Walcott, C., J.L. Gould, and J.L. Kirschvink. 1979. Pigeons have magnetites. Science 205: 1027-1029.
    Walker, M.M. and M.E. Bitterman. 1985. Conditioned responding to magnetic fields by honeybees. J Comp Physiol A 157: 67-71.
    Walker, M.M. and M.E. Bitterman. 1989a. Attached magnets impair magnetic field discrimination by honeybees. J Exp Biol 141: 447-451.
    Walker, M.M. and M.E. Bitterman. 1989b. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 145: 489-494.
    Walker, M.M. and M.E. Bitterman. 1989c. Conditioning analysis of magnetoreception in honey bees. Bioelectromagnetics 10: 261-276.
    Walker, M.M., C.E. Diebel, C.V. Haugh, P.M. Pankhurst, J.C. Montagomery, and C.R. Green. 1997. Structrue and function of the vertebrate magnetic sense. Nature 390: 371-376.
    Walker, M.M., J.L. Kirschvink, S.-B.R. Chang, and A.E. Dizon. 1984. A candidate magnetic sense organ in the yellow tuna, Thunnus albacares. Science 244: 751-753.
    Walker, M.M., T.P. Quinn, J.L. Kirschvink, and C. Groot. 1988. Production of single-domain magnetite throughout life by sockete salmon, Oncorhynchus nerka. J Exp Biol 126: 375-387.
    Wiltschko, W. and R. Wiltschko. 1995. Journal of Comparative Physiology 177:363.
    Worthylake, R.A., S. Lemoine, J.M. Watson, and K. Burridge. 2001. RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154: 147-160.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE