簡易檢索 / 詳目顯示

研究生: 梁元立
Yuan-Li Liang
論文名稱: 光學介電泳驅動細胞旋轉
Electro-rotation of Cells using Optical Dielectrophoresis
指導教授: 葉哲良
J. Andrew Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 58
中文關鍵詞: 介電泳電旋
外文關鍵詞: dielectrophoresis, electro-rotation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文主要研究光電介電泳驅動細胞旋轉。經由分析光電介電泳系統的電場,發現可能形成旋轉電場。根據電路的概念和理論的探討更確信旋轉電場的存在。根據電旋的理論,一旋轉電場在適當頻率下可驅動酵母菌細胞旋轉。為了對電場做深入的分析,Relaxation Method被用來模擬系統中的電場。以上三種方法,都推導出光電介電泳系統中存在一旋轉的電場。
    經實驗證實,在系統電壓為4伏特頻率10k赫茲下,光電介電泳成功的驅動酵母菌細胞旋轉。此時細胞的轉速每秒可達3轉左右且當細胞越靠近照光處,轉速就越快;等細胞進入照光區後轉速變慢而至停止。對此現象,本文提出兩種方法估算轉速。一種是考慮大範圍照光,而另一種考慮照光範圍近似一點時。計算的結果是,考慮大範圍照光我們能對轉速作初略的估計,而無法看出對照光位置的變化趨勢。若考慮照光範圍近似一點,則可以看出轉速對照光位置的趨勢,但是對於實際轉速範圍的估計仍然有限。
    實務上,轉速的可由電壓的平方來控制,而電壓的控制是相當容易的。提出的簡單模型可以估計是否能產生旋轉,再由電壓作精確的控制對於實驗或是更進階的應用有莫大幫助。

    關鍵字:介電泳、電旋


    Abstract
    This study investigated the electro-rotation of cells using optical dielectrophoresis (o-DEP) for the first time. The electro-rotation is the phenomenon that a rotating electric field drives particles/cells rotating. Analyzing the electric field in the o-DEP system, it is possible to produce a rotating electric field in o-DEP system. Moreover, the concept of the equivalent circuit and fundamental theory could show that a rotating electric field exists in o-DEP system. To precisely simulate the electric field, the relaxation method for electrostatic problems is applied. Above three methods can derives that there is a rotating electric field in o-DEP system.
    Since simulation takes a lot of time, two models for estimating the rotation speed are proposed. One is developed for vast illuminated region in o-DEP; another is developed for locally illuminated region in o-DEP. However the first model could only used to estimate the order of the rotation speed the trends of rotation speed. Thus, it could be applied to determine whether particles/cells are able to rotate under a certain illuminated condition. The second one can depict the trend of the rotation speed after some modification but the magnitude of the rotation speed could not be estimated precisely using this model. Actually the control of rotation speed is easy in practice because it depends on the magnitude square of the electric field. These two models are able to help us estimate the rotation effect before experiment or application.
    The electro-rotation using o-DEP can make both yeast cells and 3T3 cells rotating. The rotation speed of the yeast cells could reach 3rps under voltage of 4V and 10 kHz, but the rotation speed of the 3T3 cells is less than 1rps under voltage 5V and 50kHz. The rotation speed of both two kinds gets greater as yeast cells getting closer to the illuminated region and stop rotating when they are in the inner of the illuminated region.
    Keyword: dielectrophoresis, electro-rotation

    Table of Contents Symbol Description VII Chapter I Introduction 1 1.1 Background 1 1.2 Motivation and Objective 4 1.3 Organization of This Thesis 6 Chapter II Theory and Models 7 2.1 DEP Theory Review 7 2.1.1 Dipole Moment 7 2.1.2 Force and Torque 8 2.1.3 Velocity and Rotation Speed 10 2.2 The Model for Vast Illuminated Region in o-DEP 13 2.2.1 The Voltage Across the Solution 14 2.2.2 Electric Field in Effective Electrodes 17 2.3 The Model for Point-wise Illuminated Region in o-DEP 19 Chapter III Simulation 22 3.1 Relaxation Method for Dirichlet Boundary Value Problems 22 3.2 Simulation Setting 26 3.3 Simulation Result 28 Chapter IV Experiment 32 4.1 System Setup 32 4.2 Rotation Speed V.S. Position 37 4.3 Conductivity of Amorphous Silicon 40 4.4 Rotation of 3T3 Cell 44 Chapter V Discussion 45 5.1 Experiment and Simulation 45 5.2 Simulation and Concept for Vast Illuminated Region in o-DEP 48 5.3 Simulation and Model for Point-wise Illuminated Region in o-DEP 51 Chapter VI Conclusion 54 References 56

    References
    [1] H. A. Pohl, “The Motion and Precipitation of Suspensoids in Divergent Electric Fields”, Journal of Applied Physics, vol. 22, no. 7, pp. 869-871, July 1951.
    [2] H. A. Pohl and J. S. Crane, “ Dielectrophoresis of Cells”, Biophysical Journal, vol. 11, pp. 711-727, 1971.
    [3] S. Masuda, M. Washizu, and M. Iwadare, “Separation of Small Particles Suspended in Liquid by Non-uniform Traveling Field”, IEEE Transaction on Industry Application, vol. 23, no. 3, pp. 474-480, May/Jane 1987.
    [4] S. Masuda, M. Washizu, and I. Kawabata, “Movement of Blood Cells in Liquid by Non-uniform Traveling Field”, IEEE Transaction on Industry Application, vol. 24, no. 2, pp. 217-222, March/April 1988.
    [5] X-B Wang, Y. Huang, F. F. Becker. and P. R. C. Gascoyne, "A Unified Theory of Dielectrophoresis and Traveling Wave Dielectrophoresis," Journal of Physics D: Applied Physics, vol. 27, pp. 1571-1574, 1994.
    [6] P. R. C. Gascoyne and J. V. Vykoukal, “Dielectrophoresis-Based Sample Handeling in General-Purpose Programmable Diagnostic Instruments”, Proceedings of the IEEE, vol. 92, no. 1, pp. 22-42 January 2004.
    [7] B. A. Simmons, G. J. McGraw, R. V. Davalos, G. J. Fiechtner, Y. Fintschenko, and E. B. Cummings, “The Development of Polymeric Devices as Dielectrophoretic Separators and Concentrators”, MRS BULLETIN, vol. 31, pp. 120-124, February 2006.
    [8] N. Manaresi1, A. Romani, G. Medoro1, L. Altomare, A. Leonardi, M. Tartagni, R. Guerrieri, “A CMOS Chip for Individual Cell Manipulation and Detection”, IEEE / ISSCC 2003 / Session 11 / Micro-sensors and Bio-MEMS / Paper 11.1, 2003.

    [9] P. Y. Chiou, Z. Chang and M. C. Wu, “A Novel Optoelectronic Tweezer Using Light Induced Dielectrophoresis” IEEE/LEOS International Conference on Optical MEMS and Their Application (Optical MEMS 2003), pp. 8-9, 2003.
    [10] A. T. Ohta, P. T. Chiou, and M. C. Wu," Dynamic DMD-Driven Optoelectronics Tweezers for Microscopic Particle Manipulation", Proceeding Conference of Lasers and Electro-Optics (CLEO), Paper CWS5, San Francisco, California, May 17-21, 2004.
    [11] A. T. Ohta, P. T. Chiou, and M. C. Wu," Dynamic Array Manipulation of Microscopic Particles via Optoelectronics Tweezers," Proceedings of Solid State Sensor, Actuator and Microsystems Workshop (Hilton Head 2004) Hilton Head Island, South Carolina,pp:216- 219, 2004.
    [12] Y. S. Lu, Y. H. Chang, S. P. Tseng and J. A. Yeh," Virtual Particle Channels Based on Optical Dielectrophoresis Forces," IEEE/LEOS International Conference on Optical MEMS and Their Application (Optical MEMS 2004), pp. 20-21, 2004.
    [13] Y. S. Lu, Y. P. Huang, J. A. Yeh and C. Lee," Image Driven Cell Manipulation using Optical Dielectrophoresis (ODEP) ," )Proceedings of the Second Asian and Pacific Rim Symposium on Biophotonics (APBP 2004), pp, 238-239, 2004.
    [14] M. Born, “Über die Beweglichkeit der elektrolytischen Ionen”, Z. Phys., vol.1, pp. 221-249, 1920.
    [15] Thomas B. Jones, “Electromechanics of Particles”, Cambridge University Press.
    [16] J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathura, “Naturally occurring, optically driven, cellular rotor”, Applied Physics Letters, No. 24, vol. 85, December 2004.
    [17] G. J. Simpson, C. F. Wilson, K-H Gericke, and R. N. Zare, “Coupled Electrorotation: Two Proximate Microspheres Spin in Registry with an AC Electric Field”, CHEM-PHYS-CHEM, vol. 3, pp.416-423, 2004.
    [18] C. Holzapfel, J. Vienken, and U. Zimmermann, “Rotation of Cells in an Alternating Electric Field: Theory and Experimental Proof”, The Journal of Membrane Biology, vol. 67, pp. 13-26, 1982.
    [19] U. Zimmermann, and J. Vienken, “Electric Field-Induced Cell-to-Cell Fusion”, The Journal of Membrane Biology, vol. 67, pp. 165-182, 1982.
    [20] D. C. Chang, “Cell Poration and Cell Fusion using an oscillating electric field”, Biophys. J., vol. 56, pp. 641-652, October 1989.
    [21] H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa and N. Tanaka, “A precise method for rotating single cells”, Applied Physics Letters, No. 13, vol. 88, March 2006.
    [22] H. Lamb, “Hydrodynamics”, Dover Press, New York, 1945.
    [23] T. B. Jones and G. A. Kallio, “Dielectrophoretic Levitation of Spheres and Shells”, J. Electrostatics, vol. 6, pp. 207-224, 1979.
    [24] Gascoyne P R C, Huang Y, Hughes MPH, Wang X-B, Pethig R and Becker F F, “Manipulation of Erytholeukemia Cells Using Traveling Electric Fields”, Proc. IEEE: Med. Biol. Soc, pp. 772-773, 1994
    [25] EMIS Datareviews Series No.1, “Properties of Amorphous Silicon, second edition”, INSPEC, The Institution of Electrical Engineers
    [26] 呂衍昇,<<即時可調變式影像介電泳運用於操縱細胞與粒子>>,碩士論文,國立清華大學,民國94年。
    [27] 黃遠鵬,<<光學介電泳應用於單一細胞微陣列之研究>>,碩士論文初稿,國立清華大學,民國95年

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE