研究生: |
呂秀茹 |
---|---|
論文名稱: |
應用 CAISM 與 SCM 分析國小五年級學童之時間化聚計算概念 Using CAISM and SCM to Analyze the Concept of Time Unit Conversion for the Fifth Grade Elementary Students |
指導教授: | 洪文良 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 概念結構 、時間化聚 、概念詮釋結構模式 、相似性聚類分析演算法 |
外文關鍵詞: | concept structure, time unit conversion, concept advanced interpretive structural modeling (CAISM), Similarity-Based Robust Clustering Method (SCM) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究旨在應用概念詮釋結構模式(concept advanced interpretive structural modeling, CAISM) 及相似性聚類分析演算法(Similarity-Based Robust Clustering Method, SCM),分析國小五年級學童的時間化聚計算之概念結構。採用自編的「時間化聚計算測驗」為研究工具,以臺中縣及彰化縣的 450 名國小五年級學童為研究對象,並應用SCM 演算法將全體受試者分為3 群,進而探討各群組受試者之時間化聚計算概念階層結構圖的特徵及差異。其次研究者比較總分相同但反應組型不同的受試者其概念階層結構之異同;另外,也比較各群組學童的概念階層結構圖與專家的概念階層結構圖之差異。研究結果顯示:(1) CAISM 可以有效表徵時間化聚計算概念結構並進行分析比較;(2)不同群組之時間化聚計算概念階層結構圖有差異存在;(3)不同群組之受試者在試題內的解題策略明顯不同;(4)答對題數相同但反應組型不同的受試者其時間化聚計算概念結構不盡相同;(5)依據個別化的時間化聚計算概念階層結構圖,其概念連結指向關係表示個別學生對於各概念的精熟度與發展順序,可作為教學者補救教學之參考;(6)以專家的概念階層結構圖為參照標準,各群組的CAISM 圖之相似性係數與專家的CAISM 圖之相似性係數有顯著的差異。上述之結果與發現,有助於教學者了解學童時間化聚計算概念結構,以及做為實施補救教學或適性化分組教學之參考。
Abstract
The purpose of this study is to analyze concept structure of time unit conversion for fifth-graders by CAISM (Concept Advanced Interpretive Structural Modeling) and SCM (Similarity-Based Robust Clustering Method). There are 450 fifth graders in Taichung and Changhua were tested by self-designed time unit conversion concept test, and these task-takers are classified into 3 groups via SCM. We then compare the CAISM graphs’ characteristics and differences among these groups. We also compare the individualized hierarchical structures of the task-takers who got the same scores with different response patterns. In addition, the comparisons of CAISM graphs among these groups and experts are discussed in this study. The results are: (i) the CAISM can efficiently represent the time unit conversion concepts and analyze the conceptual structures; (ii) the students’ conceptual structures of time unit conversion are different among these groups; (iii) the problem-solving strategies of the task-takers of these three groups in each item vary greatly; (iv) the conceptual structures of the task-takers who got the same total scores and distinct response patterns are different; (v) according to the individualized CAISM graph of time unit conversion concepts, the information of the links among concepts can provide the references for remedial instruction; (vi) based on the referenced standard of experts’ concept structures, the similarity indices of the CAISM graphs of each group are significantly different from experts. Based on these results, this study can help teachers to realize the students’ concept structure of time unit conversion and provide the information about remedial instruction or group teaching.
中文部份
王佩芬、易正明、林原宏 (2008)。概念詮釋結構模式在評量除法概念上的運用。2008電腦與網路科技在教育上的應用研討會。新竹市:新竹煙波大飯店。
朱振生 (2002)。國小五年級學生時間化聚學習表現與補救教學之研究。國立屏東師範學院數理教育研究所碩士論文。
林原宏 (2005)。模糊取向的詮釋結構模式之概念結構分析與應用。教育與心理研究期刊,28(1),161-183。
林原宏、洪文良、黃國榮 (2006)。概念詮釋結構模式[軟體和手冊] 。台中市:國立台中教育大學。
林原宏、陳河開 (2007)。應用模糊結構化模式於國小六年級學童等量公理概念之分析。2007年臺灣教育學術研討會。台北市:台北市立教育大學。
俞筱鈞譯著 (1988)。認知發展實驗:理論與方法。台北市:中國文化大學出版。
康智程 (2007)。國小五年級學生時間概念試題編製及其分析之研究。國立台中教育大學教育測驗統計研究所教學碩士論文。
教育部 (2001)。國民中小學九年一貫課程暫行綱要。台北:教育部。
教育部 (2003)。國民中小學九年一貫課程綱要—數學學習領域。台北市:教育部。
郭生玉 (1999)。心理與教育測驗。台北:精華書局。
陳佩玉、鍾靜 (2003)。國小學童時間單位量概念之研究。國教學報,15,61-88。
陳孟吟、劉好 (2006)。國小五年級學童時間概念的學習表現。中華民國第22 屆科學教育學術研討會。台北市:國立臺灣師範大學。
陳源奇 (2005)。相似性分類演算法的應用。中原大學應用數學系碩士論文。
陳穗秋、鍾靜 (2003)。國小學童的時間順序與週期概念。科學教育研究與發展季刊,33,91-118。
劉怡玎 (2006)。應用相似性分類演算法於柳橙汁濃度測驗的解題規則分群。國立新竹教育大學應用數學系碩士班碩士論文。
劉錫麒 (1981)。兒童時間概念的發展。國教園地,2,4-5。
鄭佩郡 (2008)。六年級資賦優異學生與普通班學生面積概念之概念詮釋結構模式分析。國立臺中教育大學數學教育學系碩士班碩士論文。
蕭志芳 (2003)。中高年級國小學童時間概念之探究。國立台北師範學院數理教育研究所碩士論文。
蕭毓秀、鍾靜 (2002)。國小學生時間文字題的解題研究。國教學報,14,21-42。
鍾靜 (2004)。九年一貫數學領域能力指標詮釋:時間概念。行政院國家科學委員會專題研究計畫報告,NSC 92-2622-S-152-006。
鍾靜 (2004)。兒童時間概念調查及診斷教學之研究(3/3)。行政院國家科學委員會專題研究計劃成果報告,NSC-91-2522-S-152-004。
鍾靜、鄧玉芬和鄭淑珍 (2003)。學童生活中時間概念之初探研究。國立台北師院學報,16(1),1-38。
西文部份
Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. Sternberg (Ed.), Advance in the psychology of human intelligence. Hillsdale, NJ: Erlbaum.
Friedman, W. J. (1982). Conventional time concepts and children’s structuring of time. In Friedman (Ed.), The developmental psychology of time. New York: cademic Press.
Jiang, I.G., Yeh, L.C., Hung W.L. and Yang M.S. (2006) Data analysis on the extra-solar planets using robust clustering. Monthly Notices of the Royal Astronomical Society, 370(3), 1379-1392.
Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335-1342.
Leushina , A. M. (1991). The development of elementary mathematical concept in preschool children. Soviet studies in mathematics education. Volume 4. Reston, VA: NCTM. (ERIC ED 342673).
Lin, Y. H., & Yih, J. M. (2008). Fuzzy logic approach on cognition diagnosis with application on number concept for pupils. 2008 International Conference on Machine Learning and Cybernetics (ICMLC 2008) . Kunming, China.
Lin, Y. H., Chang, S. Y., & Yu, S. C. (2008). Knowledge Management on Concept Structure Analysis with Weighted Polytomous Ordering Theory and Cluster Analysis. Proceedings of Eighth International Conference on Intelligent Systems Design and Applications (ISDA 2008). pp. 677-681, Kaohsiung City, Taiwan.
Lin, Y. H., Chen, H. K., & Hung, W. L. (2008). Fuzzy Logic on Representation of Knowledge Structure and Measure of Similarity with Application on Mathematics Concepts for Pupils. Proceedings of Eighth International Conference on Intelligent Systems Design and Applications (ISDA 2008). pp.427-431, Kaohsiung City, Taiwan.
Lin, Y. H., Hung, W. L., & Yu, S. C. (2007, June). Concept Structure Analysis Method based on Integration of FLMP and ISM with Application in Equality Axiom Concepts. Proceedings of the 8th WSEAS International Conference on Fuzzy Systems. pp.99-104, Vancouver, British Columbia, Canada.
Luce, R.D.(1959). Individual choice behavior. New York: Wiley.
Nelson, G. (1982). Teaching time-telling. Arithmetic Teacher, 29(9), 31-34.
Piaget, J. (1969). The child’s conception of Time. (A. J. Pomerans, trans.) London: Routledge & Kegan Paul.
Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception and knowledge structure in expert and novice mathematical problem solvers. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8(5), 484-494.
Warfield, J. N. (1976). Societal Systems Planning, Policy and Complexity. New York: Wiley.
Warfield, J. N. (1982). Interpretive structural modeling (ISM). In S. A. Olsen (Eds.), Group Planning & Problem Solving Methods in Engineering. pp.155-201, New York: Wiley.
Yang, M. S., & Wu, K. L. (2004), A Similarity-Based Robust Clustering Method. IEEE Trans. PAMI, 26(4), 434-448.
Yih, J. M., & Lin, Y. H. (2007). An Integration of Fuzzy theory and ISM for Concept Structure Analysis with Application of Learning MATLAB. The Third International Conference on Intelligence Information Hiding and Multimedia Signal Processing ,IIHMSP 2007. Kaohsiung City, Taiwan . (Proceedings Volumn II, pp. 187-190)
Yih, J. M., Lin, Y. H., & Hung, W. L. (2007). Fuzzy Approach Method for Concept Structure Analysis based on FLMP and ISM with Application in Cognition Diagnosis of Linear Algebra. Information Sciences 2007 Proceedings of the 10th Joint Conference. The 12th International Conference on Fuzzy Theory & Technology, FTT 2007. Salt Lake City, Utah, U. S. A.