研究生: |
林妮萱 Lin, Ni-Hsuan |
---|---|
論文名稱: |
探討罕見疾病亞歷山大氏症的起因蛋白質-中間型蛋白絲GFAP The role of GFAP in Alexander Disease |
指導教授: |
彭明德
Perng, Ming-Der |
口試委員: |
高茂傑
Kao, Mou-Chieh 藍旻瑜 Lan, Min-Yu 陳正強 Chen, Cheng-Chiang 溫淑芳 Wen, Shu-Fang |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 128 |
中文關鍵詞: | 亞歷山大氏症 、中間型蛋白絲 、膠質纖維酸性蛋白 |
外文關鍵詞: | Alexander Disease, Intermediate filament, Glial fibrillary acid protein |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
罕見中樞神經退化性疾病-亞歷山大氏症 (Alexander disease),其致病原因為位於中樞神經系統當中的星狀細胞內的骨架蛋白-神經膠質纖維酸性蛋白質(Glial fibrillary acidic protein, GFAP) 於基因層次發生突變,導致GFAP於蛋白質層次無法形成正常絲狀結構,並在星狀細胞中產生大量且不正常蛋白質-羅森塔爾纖維 (Rosenthal fibers),進而導致星狀細胞結構發生改變,無法輔助神經細胞生長與訊號傳遞以及清除腦部廢物等功能,最終使得整個中樞神經系統運作受損。
一個GFAP基因上的點突變如何造成星狀細胞功能異常以及整個中樞神經系統受到影響,其中的機制仍不明確,因此,我的論文將深入探討與亞歷山大氏症相關的病理特徵-羅森塔爾纖維 (Rosenthal fibers),以及GFAP基因轉殖鼠(GFAP Tg mice) 於星狀細胞形成羅森塔爾纖維 (Rosenthal fibers)的可能原因。
我的論文研究共分為三大部分:
第一部分 (Chapter 3) : 為了進行針對GFAP蛋白質的研究,首先,我將GFAP抗體進行epitope mapping,準確得知所使用的多個GFAP單株抗體的特殊抗原辨識位,有助於往後分析GFAP fragment, GFAP isoform, 辨別來自不同物種的GFAP蛋白質(Mouse GFAP/ Rat GFAP or human GFAP)。
第二部分 (Chapter 4) : 前人因為一隻GFAP基因轉殖鼠(GFAP Tg mice)得知亞歷山大氏症疾病起因為GFAP基因突變所造成,但是,此隻GFAP基因轉殖鼠(GFAP Tg mice)的GFAP基因並沒有突變,而是帶有多個人類正常序列gfap genome,但卻有著與亞歷山大氏症患者相似的病理特徵-羅森塔爾纖維(Rosenthal fibers)於星狀細胞當中,所以,研究團隊對此感到疑惑與不解,因此,我的第二部分研究探討此隻基因轉殖鼠的病理成因,我的研究結果顯示導致此基因轉殖鼠(GFAP Tg mice)產生羅森塔爾纖維(Rosenthal fibers)原因為其GFAP protein major form與其餘原本少數表現的GFAP protein isoform比例失衡,導致GFAP蛋白質無法形成正常絲狀,進而聚集成團塊形成羅森塔爾纖維(Rosenthal fibers),所以有著與亞歷山大氏症患者相似的病理特徵,但是,為何GFAP protein major form與GFAP protein isoform的表現量失衡,其中的機制仍不明確,待往後更進一步探討。
第三部分 (Chapter 5) : 已知GFAP蛋白質降解路徑為泛素-蛋白酶體系統 (Ubiquitin-proteasome system, UPS),所以,在亞歷山大氏症病患或是此疾病的模式生物中可以偵測到泛素(Ubiquitin)表現量大量上升,但是,並未確切得知是否為GFAP被接上泛素(Ubiquitin),因為,使用能認mono-Ubiquitin抗體以及生化分析技術,所以,我的研究得知確實亞歷山大氏症病患或是此疾病的模式生物的GFAP確實被接上泛素(Ubiquitin),但是,為何無法有效清除被接上泛素(Ubiquitin)的GFAP,則需要進一步作分析與探討。
我的研究結果初步解答與亞歷山大氏症相關的病理特徵,但是對於其機制仍需要深入探討,期望在未來能解出此謎團,讓病患能得到一絲希望。
Glial fibrillary acid protein (GFAP) is an intermediate filament (IF) protein expressed predominantly in mature astrocytes of the central nervous system (CNS). Astrocytes are specialized glial cells expressing GFAP, which together with other IF proteins, form glial filaments that function as a signaling platform and a structural scaffold that makes astrocytes to serve as a guardian cell of the CNS. Although elevated GFAP expression is involved with almost all insults to the CNS, no convincing evidence of a primary astrocyte disease caused by GFAP elevation had been demonstrated until the unexpected finding that transgenic mice engineered to constitutively overexpress a human Gfap transgene exhibited a lethal phenotype. That GFAP accumulates in the form of Rosenthal fibers in astrocytes of these mice similar to those observed in patients with AxD. leads to the discovery that mutations in the GFAP gene cause Alexander disease (AxD). This is a primary genetic disorder of astrocytes often affects the entire CNS, and its distinctive neuropathology consists of abundant Rosenthal fibers that accumulate throughout the cytoplasm of astrocytes. Although the link between GFAP mutation and AxD is firmly established, how a cytoskeletal defect in astrocytes affecting their functions or interactions with other cells could cause brain catastrophe remains unknown. However, characterization of mutant GFAP as the likely initiating event at least focuses my attention on how best to approach these questions.
The goal of this study is to investigate the means by which AxD mutations lead to GFAP aggregation, astrocyte dysfunction, and severe consequences for other CNS cell types. In the first part of my study, I have developed experimental tools to enable these studies. One set of tools was to map the epitopes of a panel of commonly used anti-GFAP antibodies that could be useful in detecting biochemically modified forms of GFAP in samples from human AxD patients and mouse AxD models. Another set was to isolate primary astrocytes from GFAP knockout (KO) rats and GFAP transgenic mice to study the effect of GFAP mutations and overexpression on astrocyte pathology. In the second part of my study, I have determined the role of increased GFAP isoform expression in protein aggregation and astrocyte dysfunction. In the third part of my study, I have identified and characterized pathologically modified forms of GFAP in a rodent model of AxD and in human AxD patients.
These studies provide novel information on the pathological significance of aberrant GFAP not just in astrocytes but also in the other cells with which they interact, and suggest mechanisms by which primary astrocyte dysfunction leads to AxD and other neurological disorders with glial involvement.
Chapter 1
1. Peter, A., and Stick, R. (2015) Evolutionary aspects in intermediate filament proteins. Curr Opin Cell Biol 32, 48-55
2. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S. V., and Aebi, U. (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8, 562-573
3. Hol, E. M., and Pekny, M. (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32, 121-130
4. Middeldorp, J., and Hol, E. M. (2011) GFAP in health and disease. Prog Neurobiol 93, 421-443
5. Jessen, K. R., and Mirsky, R. (1984) Nonmyelin-forming Schwann cells coexpress surface proteins and intermediate filaments not found in myelin-forming cells: a study of Ran-2, A5E3 antigen and glial fibrillary acidic protein. J Neurocytol 13, 923-934
6. Clairembault, T., Kamphuis, W., Leclair-Visonneau, L., Rolli-Derkinderen, M., Coron, E., Neunlist, M., Hol, E. M., and Derkinderen, P. (2014) Enteric GFAP expression and phosphorylation in Parkinson's disease. J Neurochem 130, 805-815
7. Jessen, K. R., Thorpe, R., and Mirsky, R. (1984) Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. J Neurocytol 13, 187-200
8. Herrmann, H., and Aebi, U. (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73, 749-789
9. Nicolet, S., Herrmann, H., Aebi, U., and Strelkov, S. V. (2010) Atomic structure of vimentin coil 2. J Struct Biol 170, 369-376
10. Ralton, J. E., Lu, X., Hutcheson, A. M., and Quinlan, R. A. (1994) Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein. J Cell Sci 107 ( Pt 7), 1935-1948
11. Chen, W. J., and Liem, R. K. (1994) The endless story of the glial fibrillary acidic protein. J Cell Sci 107 ( Pt 8), 2299-2311
12. Quinlan, R. A., Moir, R. D., and Stewart, M. (1989) Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation. J Cell Sci 93 ( Pt 1), 71-83
13. Kim, B., Kim, S., and Jin, M. S. (2018) Crystal structure of the human glial fibrillary acidic protein 1B domain. Biochem Biophys Res Commun
14. Perng, M. D., Wen, S. F., Gibbon, T., Middeldorp, J., Sluijs, J., Hol, E. M., and Quinlan, R. A. (2008) Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association. Mol Biol Cell 19, 4521-4533
15. Eliasson, C., Sahlgren, C., Berthold, C. H., Stakeberg, J., Celis, J. E., Betsholtz, C., Eriksson, J. E., and Pekny, M. (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274, 23996-24006
16. Sihag, R. K., Inagaki, M., Yamaguchi, T., Shea, T. B., and Pant, H. C. (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313, 2098-2109
17. Goto, H., and Inagaki, M. (2014) New insights into roles of intermediate filament phosphorylation and progeria pathogenesis. IUBMB Life 66, 195-200
18. Kosako, H., Amano, M., Yanagida, M., Tanabe, K., Nishi, Y., Kaibuchi, K., and Inagaki, M. (1997) Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho-associated kinase. J Biol Chem 272, 10333-10336
19. Nishizawa, K., Yano, T., Shibata, M., Ando, S., Saga, S., Takahashi, T., and Inagaki, M. (1991) Specific localization of phosphointermediate filament protein in the constricted area of dividing cells. J Biol Chem 266, 3074-3079
20. Sekimata, M., Tsujimura, K., Tanaka, J., Takeuchi, Y., Inagaki, N., and Inagaki, M. (1996) Detection of protein kinase activity specifically activated at metaphase-anaphase transition. J Cell Biol 132, 635-641
21. Kawajiri, A., Yasui, Y., Goto, H., Tatsuka, M., Takahashi, M., Nagata, K., and Inagaki, M. (2003) Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol Biol Cell 14, 1489-1500
22. Takemura, M., Gomi, H., Colucci-Guyon, E., and Itohara, S. (2002) Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice. J Neurosci 22, 6972-6979
23. Takemura, M., Nishiyama, H., and Itohara, S. (2002) Distribution of phosphorylated glial fibrillary acidic protein in the mouse central nervous system. Genes to cells : devoted to molecular & cellular mechanisms 7, 295-307
24. Herskowitz, J. H., Seyfried, N. T., Duong, D. M., Xia, Q., Rees, H. D., Gearing, M., Peng, J., Lah, J. J., and Levey, A. I. (2010) Phosphoproteomic analysis reveals site-specific changes in GFAP and NDRG2 phosphorylation in frontotemporal lobar degeneration. J Proteome Res 9, 6368-6379
25. Sullivan, S. M., Sullivan, R. K., Miller, S. M., Ireland, Z., Bjorkman, S. T., Pow, D. V., and Colditz, P. B. (2012) Phosphorylation of GFAP is associated with injury in the neonatal pig hypoxic-ischemic brain. Neurochem Res 37, 2364-2378
26. Battaglia, R. A., Beltran, A. S., Delic, S., Dumitru, R., Robinson, J. A., Kabiraj, P., Herring, L. E., Madden, V. J., Ravinder, N., Willems, E., Newman, R. A., Quinlan, R. A., Goldman, J. E., Perng, M. D., Inagaki, M., and Snider, N. T. (2019) Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. Elife 8
27. Yasui, Y., Amano, M., Nagata, K., Inagaki, N., Nakamura, H., Saya, H., Kaibuchi, K., and Inagaki, M. (1998) Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol 143, 1249-1258
28. Jin, Z., Fu, Z., Yang, J., Troncosco, J., Everett, A. D., and Van Eyk, J. E. (2013) Identification and characterization of citrulline-modified brain proteins by combining HCD and CID fragmentation. Proteomics 13, 2682-2691
29. Brenner, M., and Nicholas, A. P. (2017) The significance of deiminated GFAP in neurodegenerative diseases with special emphasis on Alexander disease. in Protein deimination in human health and disease (Nicholas, A. P., Bhattacharya, S. K., and Thompson, P. R. eds.), Springer-Verlag. pp 391-412
30. Inagaki, M., Takahara, H., Nishi, Y., Sugawara, K., and Sato, C. (1989) Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. J Biol Chem 264, 18119-18127
31. Viedma-Poyatos, A., de Pablo, Y., Pekny, M., and Perez-Sala, D. (2018) The cysteine residue of glial fibrillary acidic protein is a critical target for lipoxidation and required for efficient network organization. Free Radic Biol Med 120, 380-394
32. DeArmond, S. J., Fajardo, M., Naughton, S. A., and Eng, L. F. (1983) Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study. Brain Res 262, 275-282
33. Zhang, Z., Zoltewicz, J. S., Mondello, S., Newsom, K. J., Yang, Z., Yang, B., Kobeissy, F., Guingab, J., Glushakova, O., Robicsek, S., Heaton, S., Buki, A., Hannay, J., Gold, M. S., Rubenstein, R., Lu, X. C., Dave, J. R., Schmid, K., Tortella, F., Robertson, C. S., and Wang, K. K. (2014) Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 9, e92698
34. Yang, Z., and Wang, K. K. (2015) Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends in neurosciences 38, 364-374
35. Fujita, K., Yamauchi, M., Matsui, T., Titani, K., Takahashi, H., Kato, T., Isomura, G., Ando, M., and Nagata, Y. (1998) Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse. Brain Res 785, 31-40
36. Heaven, M. R., Wilson, L., Barnes, S., and Brenner, M. (2019) Relative stabilities of wild-type and mutant glial fibrillary acidic protein in patients with Alexander disease. J Biol Chem 294, 15604-15612
37. Chen, Y. S., Lim, S. C., Chen, M. H., Quinlan, R. A., and Perng, M. D. (2011) Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res 317, 2252-2266
38. Chen, M. H., Hagemann, T. L., Quinlan, R. A., Messing, A., and Perng, M. D. (2013) Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN neuro
39. Lin, N. H., Messing, A., and Perng, M. D. (2017) Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One 12, e0180694
40. Mouser, P. E., Head, E., Ha, K. H., and Rohn, T. T. (2006) Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain. Am J Pathol 168, 936-946
41. Jonesco, D. S., Hassager, C., Frydland, M., Kjaergaard, J., Karsdal, M., and Henriksen, K. (2019) A caspase-6-cleaved fragment of Glial Fibrillary Acidic Protein as a potential serological biomarker of CNS injury after cardiac arrest. PLoS One 14, e0224633
42. Tang, G., Perng, M. D., Wilk, S., Quinlan, R., and Goldman, J. E. (2010) Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. J Biol Chem 285, 10527-10537
43. Tang, G., Xu, Z., and Goldman, J. E. (2006) Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem 281, 38634-38643
44. Tang, G., Yue, Z., Talloczy, Z., Hagemann, T., Cho, W., Messing, A., Sulzer, D. L., and Goldman, J. E. (2008) Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum Mol Genet 17, 1540-1555
45. Tang, G., Yue, Z., Talloczy, Z., and Goldman, J. E. (2008) Adaptive autophagy in Alexander disease-affected astrocytes. Autophagy 4, 701-703
46. Cowan, N. J., Lewis, S. A., Balcarek, J. M., Krek, V., and Shelanski, M. (1985) Structural implications of a cDNA clone encoding mouse glial fibrillary acidic protein. Ann N Y Acad Sci 455, 575-582
47. Brenner, M., Lampel, K., Nakatani, Y., Mill, J., Banner, C., Mearow, K., Dohadwala, M., Lipsky, R., and Freese, E. (1990) Characterization of human cDNA and genomic clones for glial fibrillary acidic protein. Brain Res Mol Brain Res 7, 277-286
48. Bongcam-Rudloff, E., Nister, M., Betsholtz, C., Wang, J. L., Stenman, G., Huebner, K., Croce, C. M., and Westermark, B. (1991) Human glial fibrillary acidic protein: complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer research 51, 1553-1560
49. Feinstein, D. L., Weinmaster, G. A., and Milner, R. J. (1992) Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells. J Neurosci Res 32, 1-14
50. Lim, M. C., Maubach, G., and Zhuo, L. (2008) Glial fibrillary acidic protein splice variants in hepatic stellate cells--expression and regulation. Molecules and cells 25, 376-384
51. Zelenika, D., Grima, B., Brenner, M., and Pessac, B. (1995) A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res Mol Brain Res 30, 251-258
52. Galea, E., Dupouey, P., and Feinstein, D. L. (1995) Glial fibrillary acidic protein mRNA isotypes: expression in vitro and in vivo. J Neurosci Res 41, 452-461
53. Riol, H., Tardy, M., Rolland, B., Levesque, G., and Murthy, M. R. (1997) Detection of the peripheral nervous system (PNS)-type glial fibrillary acidic protein (GFAP) and its mRNA in human lymphocytes. J Neurosci Res 48, 53-62
54. Condorelli, D. F., Nicoletti, V. G., Dell'Albani, P., Barresi, V., Caruso, A., Conticello, S. G., Belluardo, N., and Giuffrida Stella, A. M. (1999) GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem Res 24, 709-714
55. Nielsen, A. L., Holm, I. E., Johansen, M., Bonven, B., Jorgensen, P., and Jorgensen, A. L. (2002) A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem 277, 29983-29991
56. Blechingberg, J., Holm, I. E., Nielsen, K. B., Jensen, T. H., Jorgensen, A. L., and Nielsen, A. L. (2007) Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia 55, 497-507
57. Thomsen, R., Pallesen, J., Daugaard, T. F., Borglum, A. D., and Nielsen, A. L. (2013) Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin. Glia 61, 1922-1937
58. Roelofs, R. F., Fischer, D. F., Houtman, S. H., Sluijs, J. A., Van Haren, W., Van Leeuwen, F. W., and Hol, E. M. (2005) Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 52, 289-300
59. van den Berge, S. A., Middeldorp, J., Zhang, C. E., Curtis, M. A., Leonard, B. W., Mastroeni, D., Voorn, P., van de Berg, W. D., Huitinga, I., and Hol, E. M. (2010) Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta. Aging Cell 9, 313-326
60. Helman, G., Takanohashi, A., Hagemann, T. L., Perng, M. D., Walkiewicz, M., Woidill, S., Sase, S., Cross, Z., Du, Y., Zhao, L., Waldman, A., Haake, B. C., Fatemi, A., Brenner, M., Sherbini, O., Messing, A., Vanderver, A., and Simons, C. (2020) Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform. Hum Mutat 41, 1131-1137
61. van Bodegraven, E. J., Sluijs, J. A., Tan, A. K., Robe, P., and Hol, E. M. (2021) New GFAP splice isoform (GFAPmicro) differentially expressed in glioma translates into 21 kDa N-terminal GFAP protein. FASEB J 35, e21389
62. Moeton, M., Stassen, O. M., Sluijs, J. A., van der Meer, V. W., Kluivers, L. J., van Hoorn, H., Schmidt, T., Reits, E. A., van Strien, M. E., and Hol, E. M. (2016) GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions. Cell Mol Life Sci 73, 4101-4120
63. Kamphuis, W., Mamber, C., Moeton, M., Kooijman, L., Sluijs, J. A., Jansen, A. H., Verveer, M., de Groot, L. R., Smith, V. D., Rangarajan, S., Rodriguez, J. J., Orre, M., and Hol, E. M. (2012) GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One 7, e42823
64. Mamber, C., Verhaagen, J., and Hol, E. M. (2010) In vivo targeting of subventricular zone astrocytes. Prog Neurobiol 92, 19-32
65. Singh, R., Nielsen, A. L., Johansen, M. G., and Jorgensen, A. L. (2003) Genetic polymorphism and sequence evolution of an alternatively spliced exon of the glial fibrillary acidic protein gene, GFAP. Genomics 82, 185-193
66. Lin, N. H., Yang, A. W., Chang, C. H., and Perng, M. D. (2021) Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. FASEB J 35, e21614
67. Kanski, R., Sneeboer, M. A., van Bodegraven, E. J., Sluijs, J. A., Kropff, W., Vermunt, M. W., Creyghton, M. P., De Filippis, L., Vescovi, A., Aronica, E., van Tijn, P., van Strien, M. E., and Hol, E. M. (2014) Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network. J Cell Sci 127, 4368-4380
68. Moeton, M., Kanski, R., Stassen, O. M., Sluijs, J. A., Geerts, D., van Tijn, P., Wiche, G., van Strien, M. E., and Hol, E. M. (2014) Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion. FASEB J 28, 2942-2954
69. Bugiani, M., Vuong, C., Breur, M., and van der Knaap, M. S. (2018) Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain pathology 28, 408-421
70. Bignami, A., Eng, L. F., Dahl, D., and Uyeda, C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43, 429-435
71. Lewis, S. A., and Cowan, N. J. (1985) Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure. J Neurochem 45, 913-919
72. Levitt, P., and Rakic, P. (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193, 815-840
73. Takizawa, T., Gudla, P. R., Guo, L., Lockett, S., and Misteli, T. (2008) Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 22, 489-498
74. Pekny, M., Wilhelmsson, U., Tatlisumak, T., and Pekna, M. (2019) Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci Lett 689, 45-55
75. Wilhelmsson, U., Li, L., Pekna, M., Berthold, C. H., Blom, S., Eliasson, C., Renner, O., Bushong, E., Ellisman, M., Morgan, T. E., and Pekny, M. (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24, 5016-5021
76. Bradley, R. A., Shireman, J., McFalls, C., Choi, J., Canfield, S. G., Dong, Y., Liu, K., Lisota, B., Jones, J. R., Petersen, A., Bhattacharyya, A., Palecek, S. P., Shusta, E. V., Kendziorski, C., and Zhang, S. C. (2019) Regionally specified human pluripotent stem cell-derived astrocytes exhibit different molecular signatures and functional properties. Development 146
77. Escartin, C., Guillemaud, O., and Carrillo-de Sauvage, M. A. (2019) Questions and (some) answers on reactive astrocytes. Glia 67, 2221-2247
78. Sofroniew, M. V. (2014) Astrogliosis. Cold Spring Harbor perspectives in biology
79. Pekny, M., and Pekna, M. (2016) Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta 1862, 483-491
80. Parpura, V., Heneka, M. T., Montana, V., Oliet, S. H., Schousboe, A., Haydon, P. G., Stout, R. F., Jr., Spray, D. C., Reichenbach, A., Pannicke, T., Pekny, M., Pekna, M., Zorec, R., and Verkhratsky, A. (2012) Glial cells in (patho)physiology. J Neurochem 121, 4-27
81. Sofroniew, M. V. (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends in neurosciences 32, 638-647
82. Sofroniew, M. V., and Vinters, H. V. (2010) Astrocytes: biology and pathology. Acta Neuropathol 119, 7-35
83. Verkhratsky, A., and Nedergaard, M. (2018) Physiology of Astroglia. Physiological reviews 98, 239-389
84. Gomi, H., Yokoyama, T., Fujimoto, K., Ikeda, T., Katoh, A., Itoh, T., and Itohara, S. (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29-41
85. McCall, M. A., Gregg, R. G., Behringer, R. R., Brenner, M., Delaney, C. L., Galbreath, E. J., Zhang, C. L., Pearce, R. A., Chiu, S. Y., and Messing, A. (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A 93, 6361-6366
86. Pekny, M., Leveen, P., Pekna, M., Eliasson, C., Berthold, C. H., Westermark, B., and Betsholtz, C. (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14, 1590-1598
87. Liedtke, W., Edelmann, W., Bieri, P. L., Chiu, F. C., Cowan, N. J., Kucherlapati, R., and Raine, C. S. (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17, 607-615
88. Hagemann, T. L., Powers, B., Lin, N. H., Mohamed, A. F., Dague, K. L., Hannah, S. C., Bachmann, G., Mazur, C., Rigo, F., Olsen, A. L., Feany, M. B., Perng, M. D., Berman, R. F., and Messing, A. (2021) Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment. Sci Transl Med 13, eabg4711
89. Shibuki, K., Gomi, H., Chen, L., Bao, S., Kim, J. J., Wakatsuki, H., Fujisaki, T., Fujimoto, K., Katoh, A., Ikeda, T., Chen, C., Thompson, R. F., and Itohara, S. (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16, 587-599
90. Nawashiro, H., Messing, A., Azzam, N., and Brenner, M. (1998) Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. Neuroreport 9, 1691-1696
91. Triolo, D., Dina, G., Lorenzetti, I., Malaguti, M., Morana, P., Del Carro, U., Comi, G., Messing, A., Quattrini, A., and Previtali, S. C. (2006) Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. J Cell Sci 119, 3981-3993
92. Liedtke, W., Edelmann, W., Chiu, F. C., Kucherlapati, R., and Raine, C. S. (1998) Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am J Pathol 152, 251-259
93. Stenzel, W., Soltek, S., Schluter, D., and Deckert, M. (2004) The intermediate filament GFAP is important for the control of experimental murine Staphylococcus aureus-induced brain abscess and Toxoplasma encephalitis. J Neuropathol Exp Neurol 63, 631-640
94. Pekny, M., Pekna, M., Messing, A., Steinhauser, C., Lee, J. M., Parpura, V., Hol, E. M., Sofroniew, M. V., and Verkhratsky, A. (2015) Astrocytes: a central element in neurological diseases. Acta Neuropathol
95. Leduc, C., and Etienne-Manneville, S. (2015) Intermediate filaments in cell migration and invasion: the unusual suspects. Curr Opin Cell Biol 32C, 102-112
96. Lepekhin, E. A., Eliasson, C., Berthold, C. H., Berezin, V., Bock, E., and Pekny, M. (2001) Intermediate filaments regulate astrocyte motility. J Neurochem 79, 617-625
97. Ding, M., Eliasson, C., Betsholtz, C., Hamberger, A., and Pekny, M. (1998) Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res Mol Brain Res 62, 77-81
98. Lu, Y. B., Iandiev, I., Hollborn, M., Korber, N., Ulbricht, E., Hirrlinger, P. G., Pannicke, T., Wei, E. Q., Bringmann, A., Wolburg, H., Wilhelmsson, U., Pekny, M., Wiedemann, P., Reichenbach, A., and Kas, J. A. (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 25, 624-631
99. Pekny, M., Johansson, C. B., Eliasson, C., Stakeberg, J., Wallen, A., Perlmann, T., Lendahl, U., Betsholtz, C., Berthold, C. H., and Frisen, J. (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145, 503-514
100. Potokar, M., Kreft, M., Li, L., Daniel Andersson, J., Pangrsic, T., Chowdhury, H. H., Pekny, M., and Zorec, R. (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8, 12-20
101. Potokar, M., Stenovec, M., Gabrijel, M., Li, L., Kreft, M., Grilc, S., Pekny, M., and Zorec, R. (2010) Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 58, 1208-1219
102. Nakazawa, T., Takeda, M., Lewis, G. P., Cho, K. S., Jiao, J., Wilhelmsson, U., Fisher, S. K., Pekny, M., Chen, D. F., and Miller, J. W. (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48, 2760-2768
103. Li, L., Lundkvist, A., Andersson, D., Wilhelmsson, U., Nagai, N., Pardo, A. C., Nodin, C., Stahlberg, A., Aprico, K., Larsson, K., Yabe, T., Moons, L., Fotheringham, A., Davies, I., Carmeliet, P., Schwartz, J. P., Pekna, M., Kubista, M., Blomstrand, F., Maragakis, N., Nilsson, M., and Pekny, M. (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28, 468-481
104. de Pablo, Y., Nilsson, M., Pekna, M., and Pekny, M. (2013) Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem Cell Biol 140, 81-91
105. Pekny, M., Stanness, K. A., Eliasson, C., Betsholtz, C., and Janigro, D. (1998) Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia 22, 390-400
106. Kraft, A. W., Hu, X., Yoon, H., Yan, P., Xiao, Q., Wang, Y., Gil, S. C., Brown, J., Wilhelmsson, U., Restivo, J. L., Cirrito, J. R., Holtzman, D. M., Kim, J., Pekny, M., and Lee, J. M. (2013) Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 27, 187-198
107. Macauley, S. L., Pekny, M., and Sands, M. S. (2011) The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci 31, 15575-15585
108. Kamphuis, W., Kooijman, L., Orre, M., Stassen, O., Pekny, M., and Hol, E. M. (2015) GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer's disease. Glia 63, 1036-1056
109. Wilhelmsson, U., Faiz, M., de Pablo, Y., Sjoqvist, M., Andersson, D., Widestrand, A., Potokar, M., Stenovec, M., Smith, P. L., Shinjyo, N., Pekny, T., Zorec, R., Stahlberg, A., Pekna, M., Sahlgren, C., and Pekny, M. (2012) Astrocytes negatively regulate neurogenesis through the Jagged1-mediated Notch pathway. Stem Cells 30, 2320-2329
110. Menet, V., Gimenez y Ribotta, M., Chauvet, N., Drian, M. J., Lannoy, J., Colucci-Guyon, E., and Privat, A. (2001) Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 21, 6147-6158
111. Pekny, M., and Lane, E. B. (2007) Intermediate filaments and stress. Exp Cell Res 313, 2244-2254
112. Lundkvist, A., Reichenbach, A., Betsholtz, C., Carmeliet, P., Wolburg, H., and Pekny, M. (2004) Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. J Cell Sci 117, 3481-3488
113. Cho, K. S., Yang, L., Lu, B., Feng Ma, H., Huang, X., Pekny, M., and Chen, D. F. (2005) Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 118, 863-872
114. Menet, V., Prieto, M., Privat, A., and Gimenez y Ribotta, M. (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci U S A 100, 8999-9004
115. Jarlestedt, K., Rousset, C. I., Faiz, M., Wilhelmsson, U., Stahlberg, A., Sourkova, H., Pekna, M., Mallard, C., Hagberg, H., and Pekny, M. (2010) Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS One 5, e10397
116. Pekny, M., and Pekna, M. (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiological reviews 94, 1077-1098
117. Messing, A., Head, M. W., Galles, K., Galbreath, E. J., Goldman, J. E., and Brenner, M. (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152, 391-398
118. Brenner, M., and Messing, A. (1996) GFAP Transgenic Mice. Methods 10, 351-364
119. Brenner, M., Johnson, A. B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J. E., and Messing, A. (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27, 117-120
120. Casasnovas, C., Verdura, E., Velez, V., Schluter, A., Pons-Escoda, A., Homedes, C., Ruiz, M., Fourcade, S., Launay, N., and Pujol, A. (2019) A novel mutation in the GFAP gene expands the phenotype of Alexander disease. J Med Genet 56, 846-849
121. Li, R., Johnson, A. B., Salomons, G., Goldman, J. E., Naidu, S., Quinlan, R., Cree, B., Ruyle, S. Z., Banwell, B., D'Hooghe, M., Siebert, J. R., Rolf, C. M., Cox, H., Reddy, A., Gutierrez-Solana, L. G., Collins, A., Weller, R. O., Messing, A., van der Knaap, M. S., and Brenner, M. (2005) Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol 57, 310-326
122. Nam, T. S., Kim, J. H., Chang, C. H., Yoon, W., Jung, Y. S., Kang, S. Y., Shin, B. A., Perng, M. D., Choi, S. Y., and Kim, M. K. (2015) Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease. European journal of human genetics : EJHG 23, 72-78
123. Flint, D., Li, R., Webster, L. S., Naidu, S., Kolodny, E., Percy, A., van der Knaap, M., Powers, J. M., Mantovani, J. F., Ekstein, J., Goldman, J. E., Messing, A., and Brenner, M. (2012) Splice site, frameshift, and chimeric GFAP mutations in Alexander disease. Hum Mutat 33, 1141-1148
124. Green, L., Berry, I. R., Childs, A. M., McCullagh, H., Jose, S., Warren, D., Craven, I., Camm, N., Prescott, K., van der Knaap, M. S., Sheridan, E., and Livingston, J. H. (2018) Whole Exon Deletion in the GFAP Gene Is a Novel Molecular Mechanism Causing Alexander Disease. Neuropediatrics 49, 118-122
125. Fu, M. H., Chang, Y. Y., Lin, N. H., Yang, A. W., Chang, C. C., Liu, J. S., Peng, C. H., Wu, K. L. H., Perng, M. D., and Lan, M. Y. (2020) Recessively-Inherited Adult-Onset Alexander Disease Caused by a Homozygous Mutation in the GFAP Gene. Mov Disord 35, 1662-1667
126. Brenner, M., Goldman, J. E., Quinlan, R. A., and Messing, A. (2008) Alexander disease: a genetic disorder of astrocytes. in Astrocytes in pathophysiology of the nervous system (Parpura, V. H., and Haydon, P. G. eds.), Springer, Boston, Massachusetts, USA. pp
127. van der Knaap, M. S., and Bugiani, M. (2017) Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 134, 351-382
128. Barkovich, A. J., and Messing, A. (2006) Alexander disease: not just a leukodystrophy anymore. Neurology 66, 468-469
129. Russo, L. S., Jr., Aron, A., and Anderson, P. J. (1976) Alexander's disease: a report and reappraisal. Neurology 26, 607-614
130. Prust, M., Wang, J., Morizono, H., Messing, A., Brenner, M., Gordon, E., Hartka, T., Sokohl, A., Schiffmann, R., Gordish-Dressman, H., Albin, R., Amartino, H., Brockman, K., Dinopoulos, A., Dotti, M. T., Fain, D., Fernandez, R., Ferreira, J., Fleming, J., Gill, D., Griebel, M., Heilstedt, H., Kaplan, P., Lewis, D., Nakagawa, M., Pedersen, R., Reddy, A., Sawaishi, Y., Schneider, M., Sherr, E., Takiyama, Y., Wakabayashi, K., Gorospe, J. R., and Vanderver, A. (2011) GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology 77, 1287-1294
131. Yoshida, T., and Nakagawa, M. (2012) Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Neuropathology 32, 440-446
132. Mura, E., Nicita, F., Masnada, S., Battini, R., Ticci, C., Montomoli, M., Berardinelli, A., Pantaleoni, C., Ardissone, A., Foiadelli, T., Tartara, E., Salsano, E., Veggiotti, P., Ceccherini, I., Moroni, I., Bertini, E., and Tonduti, D. (2021) Alexander disease evolution over time: data from an Italian cohort of pediatric-onset patients. Molecular genetics and metabolism 134, 353-358
133. Goldman, J. E., and Corbin, E. (1988) Isolation of a major protein component of Rosenthal fibers. Am J Pathol 130, 569-578
134. Heaven, M. R., Flint, D., Randall, S. M., Sosunov, A. A., Wilson, L., Barnes, S., Goldman, J. E., Muddiman, D. C., and Brenner, M. (2016) Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res 15, 2265-2282
135. Tomokane, N., Iwaki, T., Tateishi, J., Iwaki, A., and Goldman, J. E. (1991) Rosenthal fibers share epitopes with alpha B-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold. Am J Pathol 138, 875-885
136. Iwaki, T., Iwaki, A., and Goldman, J. E. (1993) Alpha B-crystallin in oxidative muscle fibers and its accumulation in ragged-red fibers: a comparative immunohistochemical and histochemical study in human skeletal muscle. Acta Neuropathol 85, 475-480
137. Iwaki, T., Kume-Iwaki, A., Liem, R. K., and Goldman, J. E. (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell 57, 71-78
138. Tian, R., Gregor, M., Wiche, G., and Goldman, J. E. (2006) Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Am J Pathol 168, 888-897
139. Hagemann, T. L., Jobe, E. M., and Messing, A. (2012) Genetic ablation of Nrf2/antioxidant response pathway in Alexander disease mice reduces hippocampal gliosis but does not impact survival. PLoS One 7, e37304
140. Pekny, T., Faiz, M., Wilhelmsson, U., Curtis, M. A., Matej, R., Skalli, O., and Pekny, M. (2014) Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. APMIS 122, 76-80
141. Hagemann, T. L., Connor, J. X., and Messing, A. (2006) Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci 26, 11162-11173
142. Hagemann, T. L., Gaeta, S. A., Smith, M. A., Johnson, D. A., Johnson, J. A., and Messing, A. (2005) Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hum Mol Genet 14, 2443-2458
143. Jany, P. L., Hagemann, T. L., and Messing, A. (2013) GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN neuro 5, e00109
144. Tanaka, K. F., Takebayashi, H., Yamazaki, Y., Ono, K., Naruse, M., Iwasato, T., Itohara, S., Kato, H., and Ikenaka, K. (2007) Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance. Glia 55, 617-631
145. Yang, A. W., Lin, N. H., Yeh, T. H., Snider, N., and Perng, M. D. (2022) Effects of Alexander disease-associated mutations on the assembly and organization of GFAP intermediate filaments. Mol Biol Cell 33, ar69
146. Walker, A. K., Daniels, C. M., Goldman, J. E., Trojanowski, J. Q., Lee, V. M., and Messing, A. (2014) Astrocytic TDP-43 pathology in Alexander disease. J Neurosci 34, 6448-6458
147. Jany, P. L., Agosta, G. E., Benko, W. S., Eickhoff, J. C., Keller, S. R., Koehler, W., Koeller, D., Mar, S., Naidu, S., Marie Ness, J., Pareyson, D., Renaud, D. L., Salsano, E., Schiffmann, R., Simon, J., Vanderver, A., Eichler, F., van der Knaap, M. S., and Messing, A. (2015) CSF and Blood Levels of GFAP in Alexander Disease(1,2,3). eNeuro 2
148. Sosunov, A. A., McKhann, G. M., 2nd, and Goldman, J. E. (2017) The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun 5, 27
149. Wang, L., Colodner, K. J., and Feany, M. B. (2011) Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model. J Neurosci 31, 2868-2877
150. Toivola, D. M., Strnad, P., Habtezion, A., and Omary, M. B. (2010) Intermediate filaments take the heat as stress proteins. Trends Cell Biol 20, 79-91
151. Cho, W., and Messing, A. (2009) Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice. Exp Cell Res 315, 1260-1272
152. Jones, J. R., Kong, L., Hanna, M. G. t., Hoffman, B., Krencik, R., Bradley, R., Hagemann, T., Choi, J., Doers, M., Dubovis, M., Sherafat, M. A., Bhattacharyya, A., Kendziorski, C., Audhya, A., Messing, A., and Zhang, S. C. (2018) Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes. Cell Rep 25, 947-958 e944
153. Tian, R., Wu, X., Hagemann, T. L., Sosunov, A. A., Messing, A., McKhann, G. M., and Goldman, J. E. (2010) Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J Neuropathol Exp Neurol 69, 335-345
154. Minkel, H. R., Anwer, T. Z., Arps, K. M., Brenner, M., and Olsen, M. L. (2015) Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia 63, 2285-2297
155. Deng, W., Yue, Q., Rosenberg, P. A., Volpe, J. J., and Jensen, F. E. (2006) Oligodendrocyte excitotoxicity determined by local glutamate accumulation and mitochondrial function. J Neurochem 98, 213-222
156. Olabarria, M., Putilina, M., Riemer, E. C., and Goldman, J. E. (2015) Astrocyte pathology in Alexander disease causes a marked inflammatory environment. Acta Neuropathol 130, 469-486
157. Lutz, S. E., Zhao, Y., Gulinello, M., Lee, S. C., Raine, C. S., and Brosnan, C. F. (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29, 7743-7752
158. Sosunov, A. A., Guilfoyle, E., Wu, X., McKhann, G. M., 2nd, and Goldman, J. E. (2013) Phenotypic conversions of "protoplasmic" to "reactive" astrocytes in Alexander disease. J Neurosci 33, 7439-7450
159. Olabarria, M., and Goldman, J. E. (2017) Disorders of Astrocytes: Alexander Disease as a Model. Annu Rev Pathol 12, 131-152
160. Hagemann, T. L., Paylor, R., and Messing, A. (2013) Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease. J Neurosci 33, 18698-18706
161. Barkho, B. Z., Song, H., Aimone, J. B., Smrt, R. D., Kuwabara, T., Nakashima, K., Gage, F. H., and Zhao, X. (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem cells and development 15, 407-421
162. Song, H., Stevens, C. F., and Gage, F. H. (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39-44
163. Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G., and Sofroniew, M. V. (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature neuroscience 7, 1233-1241
164. Seri, B., Garcia-Verdugo, J. M., McEwen, B. S., and Alvarez-Buylla, A. (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21, 7153-7160
165. Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., Bostrom, E., Westerlund, I., Vial, C., Buchholz, B. A., Possnert, G., Mash, D. C., Druid, H., and Frisen, J. (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219-1227
166. Messing, A., LaPash Daniels, C. M., and Hagemann, T. L. (2010) Strategies for treatment in Alexander disease. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 7, 507-515
167. Cho, W., Brenner, M., Peters, N., and Messing, A. (2010) Drug screening to identify suppressors of GFAP expression. Hum Mol Genet 19, 3169-3178
168. Sechi, G., Matta, M., Deiana, G. A., Balbi, P., Bachetti, T., Di Zanni, E., Ceccherini, I., and Serra, A. (2010) Ceftriaxone has a therapeutic role in Alexander disease. Prog Neuropsychopharmacol Biol Psychiatry 34, 416-417
169. LaPash Daniels, C. M., Paffenroth, E., Austin, E. V., Glebov, K., Lewis, D., Walter, J., and Messing, A. (2015) Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease. PLoS One 10, e0138132
170. Wang, L., Hagemann, T. L., Messing, A., and Feany, M. B. (2016) An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease. J Neurosci 36, 1445-1455
171. Hagemann, T. L., Powers, B., Mazur, C., Kim, A., Wheeler, S., Hung, G., Swayze, E., and Messing, A. (2017) Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann Neurol
chapter 2
1. Lin, N. H., Huang, Y. S., Opal, P., Goldman, R. D., Messing, A., and Perng, M. D. (2016) The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell 27, 3980-3990
2. Lin, N. H., Jian, W. S., Snider, N., and Perng, M. D. (2024) Glial fibrillary acidic protein is pathologically modified in Alexander disease. J Biol Chem 300, 107402
3. Lin, N. H., Messing, A., and Perng, M. D. (2017) Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One 12, e0180694
4. Lin, N. H., Yang, A. W., Chang, C. H., and Perng, M. D. (2021) Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. FASEB J 35, e21614
Chapter 3
1. Lin, N. H., Messing, A., and Perng, M. D. (2017) Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One 12, e0180694
2. Brenner, M., Johnson, A. B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J. E., and Messing, A. (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27, 117-120
3. Goldman, J. E., and Corbin, E. (1988) Isolation of a major protein component of Rosenthal fibers. Am J Pathol 130, 569-578
4. Heaven, M. R., Flint, D., Randall, S. M., Sosunov, A. A., Wilson, L., Barnes, S., Goldman, J. E., Muddiman, D. C., and Brenner, M. (2016) Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res 15, 2265-2282
5. Pekny, T., Faiz, M., Wilhelmsson, U., Curtis, M. A., Matej, R., Skalli, O., and Pekny, M. (2014) Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. APMIS 122, 76-80
6. Tian, R., Gregor, M., Wiche, G., and Goldman, J. E. (2006) Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Am J Pathol 168, 888-897
7. Iwaki, T., Iwaki, A., and Goldman, J. E. (1993) Alpha B-crystallin in oxidative muscle fibers and its accumulation in ragged-red fibers: a comparative immunohistochemical and histochemical study in human skeletal muscle. Acta Neuropathol 85, 475-480
8. Iwaki, T., Kume-Iwaki, A., Liem, R. K., and Goldman, J. E. (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell 57, 71-78
9. Albrechtsen, M., von Gerstenberg, A. C., and Bock, E. (1984) Mouse monoclonal antibodies reacting with human brain glial fibrillary acidic protein. J Neurochem 42, 86-93
10. Courel, M. N., Girard, N., Delpech, B., and Chauzy, C. (1986) Specific monoclonal antibodies to glial fibrillary acidic protein (GFAP). J Neuroimmunol 11, 271-276
11. Debus, E., Weber, K., and Osborn, M. (1983) Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation 25, 193-203
12. Gheuens, J., de Schutter, E., Noppe, M., and Lowenthal, A. (1984) Identification of several forms of the glial fibrillary acidic protein, or alpha-albumin, by a specific monoclonal antibody. J Neurochem 43, 964-970
13. Jie, Z., Ivarsson, B., and Collins, V. P. (1986) Monoclonal antibodies to GFAP epitopes available in formaldehyde fixed tissue. Acta Pathol Microbiol Immunol Scand A 94, 353-361
14. Lee, V. M., Page, C. D., Wu, H. L., and Schlaepfer, W. W. (1984) Monoclonal antibodies to gel-excised glial filament protein and their reactivities with other intermediate filament proteins. J Neurochem 42, 25-32
15. McLendon, R. E., Burger, P. C., Pegram, C. N., Eng, L. F., and Bigner, D. D. (1986) The immunohistochemical application of three anti-GFAP monoclonal antibodies to formalin-fixed, paraffin-embedded, normal and neoplastic brain tissues. J Neuropathol Exp Neurol 45, 692-703
16. Pegram, C. N., Eng, L. F., Wikstrand, C. J., McComb, R. D., Lee, Y. L., and Bigner, D. D. (1985) Monoclonal antibodies reactive with epitopes restricted to glial fibrillary acidic proteins of several species. Neurochem Pathol 3, 119-138
17. Chen, M. H., Hagemann, T. L., Quinlan, R. A., Messing, A., and Perng, M. D. (2013) Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN neuro
18. Chen, Y. S., Lim, S. C., Chen, M. H., Quinlan, R. A., and Perng, M. D. (2011) Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res 317, 2252-2266
19. Messing, A., Head, M. W., Galles, K., Galbreath, E. J., Goldman, J. E., and Brenner, M. (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152, 391-398
20. Perng, M., Su, M., Wen, S. F., Li, R., Gibbon, T., Prescott, A. R., Brenner, M., and Quinlan, R. A. (2006) The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am J Hum Genet 79, 197-213
21. Perng, M. D., Wen, S. F., Gibbon, T., Middeldorp, J., Sluijs, J., Hol, E. M., and Quinlan, R. A. (2008) Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association. Mol Biol Cell 19, 4521-4533
22. Walker, A. K., Daniels, C. M., Goldman, J. E., Trojanowski, J. Q., Lee, V. M., and Messing, A. (2014) Astrocytic TDP-43 pathology in Alexander disease. J Neurosci 34, 6448-6458
23. Tang, G., Yue, Z., Talloczy, Z., Hagemann, T., Cho, W., Messing, A., Sulzer, D. L., and Goldman, J. E. (2008) Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum Mol Genet 17, 1540-1555
24. Tang, G., Xu, Z., and Goldman, J. E. (2006) Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem 281, 38634-38643
25. Hagemann, T. L., Connor, J. X., and Messing, A. (2006) Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci 26, 11162-11173
26. Hagemann, T. L., Gaeta, S. A., Smith, M. A., Johnson, D. A., Johnson, J. A., and Messing, A. (2005) Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hum Mol Genet 14, 2443-2458
27. Tanaka, M., Yamaguchi, K., Tatsukawa, T., Theis, M., Willecke, K., and Itohara, S. (2008) Connexin43 and bergmann glial gap junctions in cerebellar function. Front Neurosci 2, 225-233
28. Leroy, K., Duyckaerts, C., Bovekamp, L., Muller, O., Anderton, B. H., and Brion, J. P. (2001) Increase of adenomatous polyposis coli immunoreactivity is a marker of reactive astrocytes in Alzheimer's disease and in other pathological conditions. Acta Neuropathol 102, 1-10
29. Royds, J. A., Ironside, J. W., Taylor, C. B., Graham, D. I., and Timperley, W. R. (1986) An immunohistochemical study of glial and neuronal markers in primary neoplasms of the central nervous system. Acta Neuropathol 70, 320-326
30. Sembritzki, O., Hagel, C., Lamszus, K., Deppert, W., and Bohn, W. (2002) Cytoplasmic localization of wild-type p53 in glioblastomas correlates with expression of vimentin and glial fibrillary acidic protein. Neuro Oncol 4, 171-178
31. Ylagan, L. R., and Quinn, B. (1997) CD44 expression in astrocytic tumors. Mod Pathol 10, 1239-1246
32. Hol, E. M., and Pekny, M. (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32, 121-130
33. Condorelli, D. F., Nicoletti, V. G., Dell'Albani, P., Barresi, V., Caruso, A., Conticello, S. G., Belluardo, N., and Giuffrida Stella, A. M. (1999) GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem Res 24, 709-714
34. Feinstein, D. L., Weinmaster, G. A., and Milner, R. J. (1992) Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells. J Neurosci Res 32, 1-14
35. Zelenika, D., Grima, B., Brenner, M., and Pessac, B. (1995) A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res Mol Brain Res 30, 251-258
36. Hol, E. M., Roelofs, R. F., Moraal, E., Sonnemans, M. A., Sluijs, J. A., Proper, E. A., de Graan, P. N., Fischer, D. F., and van Leeuwen, F. W. (2003) Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 8, 786-796
37. Zhang, Z., Zoltewicz, J. S., Mondello, S., Newsom, K. J., Yang, Z., Yang, B., Kobeissy, F., Guingab, J., Glushakova, O., Robicsek, S., Heaton, S., Buki, A., Hannay, J., Gold, M. S., Rubenstein, R., Lu, X. C., Dave, J. R., Schmid, K., Tortella, F., Robertson, C. S., and Wang, K. K. (2014) Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 9, e92698
38. Zoltewicz, J. S., Scharf, D., Yang, B., Chawla, A., Newsom, K. J., and Fang, L. (2012) Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury. Biomarker insights 7, 71-79
39. Fujita, K., Kato, T., Yamauchi, M., Ando, M., Honda, M., and Nagata, Y. (1998) Increases in fragmented glial fibrillary acidic protein levels in the spinal cords of patients with amyotrophic lateral sclerosis. Neurochem Res 23, 169-174
40. Yang, Z., and Wang, K. K. (2015) Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends in neurosciences 38, 364-374
41. Mouser, P. E., Head, E., Ha, K. H., and Rohn, T. T. (2006) Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain. Am J Pathol 168, 936-946
42. Tang, G., Perng, M. D., Wilk, S., Quinlan, R., and Goldman, J. E. (2010) Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. J Biol Chem 285, 10527-10537
43. Jany, P. L., Hagemann, T. L., and Messing, A. (2013) GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN neuro 5, e00109
44. Messing, A., and Brenner, M. (2020) GFAP at 50. ASN neuro 12, 1759091420949680
45. Chiu, F. C., and Goldman, J. E. (1984) Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J Neurochem 42, 166-174
46. Morrison, R. S., De Vellis, J., Lee, Y. L., Bradshaw, R. A., and Eng, L. F. (1985) Hormones and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes. J Neurosci Res 14, 167-176
47. DeArmond, S. J., Lee, Y. L., Kretzschmar, H. A., and Eng, L. F. (1986) Turnover of glial filaments in mouse spinal cord. J Neurochem 47, 1749-1753
48. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci U S A 107, 14508-14513
49. Moody, L. R., Barrett-Wilt, G. A., Sussman, M. R., and Messing, A. (2017) Glial Fibrillary Acidic Protein Exhibits Altered Turnover Kinetics in a Mouse Model of Alexander Disease. J Biol Chem
50. Kyllerman, M., Rosengren, L., Wiklund, L. M., and Holmberg, E. (2005) Increased levels of GFAP in the cerebrospinal fluid in three subtypes of genetically confirmed Alexander disease. Neuropediatrics 36, 319-323
51. Jany, P. L., Agosta, G. E., Benko, W. S., Eickhoff, J. C., Keller, S. R., Koehler, W., Koeller, D., Mar, S., Naidu, S., Marie Ness, J., Pareyson, D., Renaud, D. L., Salsano, E., Schiffmann, R., Simon, J., Vanderver, A., Eichler, F., van der Knaap, M. S., and Messing, A. (2015) CSF and Blood Levels of GFAP in Alexander Disease(1,2,3). eNeuro 2
52. Petzold, A. (2015) Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res 1600, 17-31
53. Ishigami, A., Masutomi, H., Handa, S., Nakamura, M., Nakaya, S., Uchida, Y., Saito, Y., Murayama, S., Jang, B., Jeon, Y. C., Choi, E. K., Kim, Y. S., Kasahara, Y., Maruyama, N., and Toda, T. (2015) Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer's disease brains. J Neurosci Res 93, 1664-1674
54. Liu, D., Liu, C., Li, J., Azadzoi, K., Yang, Y., Fei, Z., Dou, K., Kowall, N. W., Choi, H. P., Vieira, F., and Yang, J. H. (2013) Proteomic analysis reveals differentially regulated protein acetylation in human amyotrophic lateral sclerosis spinal cord. PLoS One 8, e80779
55. Sihag, R. K., Inagaki, M., Yamaguchi, T., Shea, T. B., and Pant, H. C. (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313, 2098-2109
56. Papa, L., Lewis, L. M., Falk, J. L., Zhang, Z., Silvestri, S., Giordano, P., Brophy, G. M., Demery, J. A., Dixit, N. K., Ferguson, I., Liu, M. C., Mo, J., Akinyi, L., Schmid, K., Mondello, S., Robertson, C. S., Tortella, F. C., Hayes, R. L., and Wang, K. K. (2012) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 59, 471-483
57. Inekci, D., Jonesco, D. S., Kennard, S., Karsdal, M. A., and Henriksen, K. (2015) The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer's disease. Frontiers in neurology 6, 90
58. Cunningham, R., Jany, P., Messing, A., and Li, L. (2013) Protein changes in immunodepleted cerebrospinal fluid from a transgenic mouse model of Alexander disease detected using mass spectrometry. J Proteome Res 12, 719-728
Chapter 4
1. Lin, N. H., Yang, A. W., Chang, C. H., and Perng, M. D. (2021) Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. FASEB J 35, e21614
2. Hol, E. M., and Pekny, M. (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32, 121-130
3. Roelofs, R. F., Fischer, D. F., Houtman, S. H., Sluijs, J. A., Van Haren, W., Van Leeuwen, F. W., and Hol, E. M. (2005) Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 52, 289-300
4. Perng, M. D., Wen, S. F., Gibbon, T., Middeldorp, J., Sluijs, J., Hol, E. M., and Quinlan, R. A. (2008) Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association. Mol Biol Cell 19, 4521-4533
5. Hol, E. M., and Capetanaki, Y. (2017) Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin. Cold Spring Harbor perspectives in biology 9
6. Nielsen, A. L., Holm, I. E., Johansen, M., Bonven, B., Jorgensen, P., and Jorgensen, A. L. (2002) A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem 277, 29983-29991
7. Blechingberg, J., Holm, I. E., Nielsen, K. B., Jensen, T. H., Jorgensen, A. L., and Nielsen, A. L. (2007) Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia 55, 497-507
8. Brenner, M., Lampel, K., Nakatani, Y., Mill, J., Banner, C., Mearow, K., Dohadwala, M., Lipsky, R., and Freese, E. (1990) Characterization of human cDNA and genomic clones for glial fibrillary acidic protein. Brain Res Mol Brain Res 7, 277-286
9. Reeves, S. A., Helman, L. J., Allison, A., and Israel, M. A. (1989) Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci U S A 86, 5178-5182
10. Condorelli, D. F., Nicoletti, V. G., Dell'Albani, P., Barresi, V., Caruso, A., Conticello, S. G., Belluardo, N., and Giuffrida Stella, A. M. (1999) GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem Res 24, 709-714
11. Middeldorp, J., and Hol, E. M. (2011) GFAP in health and disease. Prog Neurobiol 93, 421-443
12. Kamphuis, W., Mamber, C., Moeton, M., Kooijman, L., Sluijs, J. A., Jansen, A. H., Verveer, M., de Groot, L. R., Smith, V. D., Rangarajan, S., Rodriguez, J. J., Orre, M., and Hol, E. M. (2012) GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One 7, e42823
13. Clairembault, T., Kamphuis, W., Leclair-Visonneau, L., Rolli-Derkinderen, M., Coron, E., Neunlist, M., Hol, E. M., and Derkinderen, P. (2014) Enteric GFAP expression and phosphorylation in Parkinson's disease. J Neurochem 130, 805-815
14. Brenner, M. (2014) Role of GFAP in CNS injuries. Neurosci Lett 565, 7-13
15. Gomi, H., Yokoyama, T., Fujimoto, K., Ikeda, T., Katoh, A., Itoh, T., and Itohara, S. (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29-41
16. Liedtke, W., Edelmann, W., Bieri, P. L., Chiu, F. C., Cowan, N. J., Kucherlapati, R., and Raine, C. S. (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17, 607-615
17. McCall, M. A., Gregg, R. G., Behringer, R. R., Brenner, M., Delaney, C. L., Galbreath, E. J., Zhang, C. L., Pearce, R. A., Chiu, S. Y., and Messing, A. (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A 93, 6361-6366
18. Pekny, M., Leveen, P., Pekna, M., Eliasson, C., Berthold, C. H., Westermark, B., and Betsholtz, C. (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14, 1590-1598
19. Liedtke, W., Edelmann, W., Chiu, F. C., Kucherlapati, R., and Raine, C. S. (1998) Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am J Pathol 152, 251-259
20. Nawashiro, H., Messing, A., Azzam, N., and Brenner, M. (1998) Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. Neuroreport 9, 1691-1696
21. Otani, N., Nawashiro, H., Fukui, S., Ooigawa, H., Ohsumi, A., Toyooka, T., Shima, K., Gomi, H., and Brenner, M. (2006) Enhanced hippocampal neurodegeneration after traumatic or kainate excitotoxicity in GFAP-null mice. J Clin Neurosci 13, 934-938
22. Messing, A., Head, M. W., Galles, K., Galbreath, E. J., Goldman, J. E., and Brenner, M. (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152, 391-398
23. Brenner, M., Johnson, A. B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J. E., and Messing, A. (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27, 117-120
24. Helman, G., Takanohashi, A., Hagemann, T. L., Perng, M. D., Walkiewicz, M., Woidill, S., Sase, S., Cross, Z., Du, Y., Zhao, L., Waldman, A., Haake, B. C., Fatemi, A., Brenner, M., Sherbini, O., Messing, A., Vanderver, A., and Simons, C. (2020) Type II Alexander disease caused by splicing errors and aberrant overexpression of an uncharacterized GFAP isoform. Hum Mutat 41, 1131-1137
25. Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., and Barres, B. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28, 264-278
26. Foo, L. C., Allen, N. J., Bushong, E. A., Ventura, P. B., Chung, W. S., Zhou, L., Cahoy, J. D., Daneman, R., Zong, H., Ellisman, M. H., and Barres, B. A. (2011) Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799-811
27. Eng, L. F., Lee, Y. L., Kwan, H., Brenner, M., and Messing, A. (1998) Astrocytes cultured from transgenic mice carrying the added human glial fibrillary acidic protein gene contain Rosenthal fibers. J Neurosci Res 53, 353-360
28. Tang, G., Yue, Z., Talloczy, Z., Hagemann, T., Cho, W., Messing, A., Sulzer, D. L., and Goldman, J. E. (2008) Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum Mol Genet 17, 1540-1555
29. Lin, N. H., Messing, A., and Perng, M. D. (2017) Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One 12, e0180694
30. Perng, M., Su, M., Wen, S. F., Li, R., Gibbon, T., Prescott, A. R., Brenner, M., and Quinlan, R. A. (2006) The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am J Hum Genet 79, 197-213
31. Sitcheran, R., Gupta, P., Fisher, P. B., and Baldwin, A. S. (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24, 510-520
32. Heaven, M. R., Flint, D., Randall, S. M., Sosunov, A. A., Wilson, L., Barnes, S., Goldman, J. E., Muddiman, D. C., and Brenner, M. (2016) Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res 15, 2265-2282
33. Iwaki, T., Iwaki, A., and Goldman, J. E. (1993) Alpha B-crystallin in oxidative muscle fibers and its accumulation in ragged-red fibers: a comparative immunohistochemical and histochemical study in human skeletal muscle. Acta Neuropathol 85, 475-480
34. Mouser, P. E., Head, E., Ha, K. H., and Rohn, T. T. (2006) Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain. Am J Pathol 168, 936-946
35. Acarin, L., Villapol, S., Faiz, M., Rohn, T. T., Castellano, B., and Gonzalez, B. (2007) Caspase-3 activation in astrocytes following postnatal excitotoxic damage correlates with cytoskeletal remodeling but not with cell death or proliferation. Glia 55, 954-965
36. Chen, M. H., Hagemann, T. L., Quinlan, R. A., Messing, A., and Perng, M. D. (2013) Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN neuro
37. Battaglia, R. A., Beltran, A. S., Delic, S., Dumitru, R., Robinson, J. A., Kabiraj, P., Herring, L. E., Madden, V. J., Ravinder, N., Willems, E., Newman, R. A., Quinlan, R. A., Goldman, J. E., Perng, M. D., Inagaki, M., and Snider, N. T. (2019) Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. Elife 8
38. van Bodegraven, E. J., Sluijs, J. A., Tan, A. K., Robe, P., and Hol, E. M. (2021) New GFAP splice isoform (GFAPmicro) differentially expressed in glioma translates into 21 kDa N-terminal GFAP protein. FASEB J 35, e21389
39. Toops, K. A., Hagemann, T. L., Messing, A., and Nickells, R. W. (2012) The effect of glial fibrillary acidic protein expression on neurite outgrowth from retinal explants in a permissive environment. BMC Res Notes 5, 693
40. Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J. F., Darbandi, S. F., Knowles, D., Li, Y. I., Kosmicki, J. A., Arbelaez, J., Cui, W., Schwartz, G. B., Chow, E. D., Kanterakis, E., Gao, H., Kia, A., Batzoglou, S., Sanders, S. J., and Farh, K. K. (2019) Predicting Splicing from Primary Sequence with Deep Learning. Cell 176, 535-548 e524
41. Ralton, J. E., Lu, X., Hutcheson, A. M., and Quinlan, R. A. (1994) Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein. J Cell Sci 107 ( Pt 7), 1935-1948
42. Quinlan, R. A., Moir, R. D., and Stewart, M. (1989) Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation. J Cell Sci 93 ( Pt 1), 71-83
43. Chen, W. J., and Liem, R. K. (1994) The endless story of the glial fibrillary acidic protein. J Cell Sci 107 ( Pt 8), 2299-2311
44. Herrmann, H., and Aebi, U. (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73, 749-789
45. Eliasson, C., Sahlgren, C., Berthold, C. H., Stakeberg, J., Celis, J. E., Betsholtz, C., Eriksson, J. E., and Pekny, M. (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274, 23996-24006
46. Kouklis, P. D., Hatzfeld, M., Brunkener, M., Weber, K., and Georgatos, S. D. (1993) In vitro assembly properties of vimentin mutagenized at the beta-site tail motif. J Cell Sci 106 ( Pt 3), 919-928
47. Messing, A., Li, R., Naidu, S., Taylor, J. P., Silverman, L., Flint, D., van der Knaap, M. S., and Brenner, M. (2012) Archetypal and new families with Alexander disease and novel mutations in GFAP. Archives of neurology 69, 208-214
48. Herrmann, H., Strelkov, S. V., Feja, B., Rogers, K. R., Brettel, M., Lustig, A., Haner, M., Parry, D. A., Steinert, P. M., Burkhard, P., and Aebi, U. (2000) The intermediate filament protein consensus motif of helix 2B: its atomic structure and contribution to assembly. J Mol Biol 298, 817-832
49. Kapinos, L. E., Schumacher, J., Mucke, N., Machaidze, G., Burkhard, P., Aebi, U., Strelkov, S. V., and Herrmann, H. (2010) Characterization of the head-to-tail overlap complexes formed by human lamin A, B1 and B2 "half-minilamin" dimers. J Mol Biol 396, 719-731
50. Strelkov, S. V., Herrmann, H., Geisler, N., Wedig, T., Zimbelmann, R., Aebi, U., and Burkhard, P. (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J 21, 1255-1266
51. Kamphuis, W., Middeldorp, J., Kooijman, L., Sluijs, J. A., Kooi, E. J., Moeton, M., Freriks, M., Mizee, M. R., and Hol, E. M. (2014) Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease. Neurobiol Aging 35, 492-510
52. Walker, A. K., Daniels, C. M., Goldman, J. E., Trojanowski, J. Q., Lee, V. M., and Messing, A. (2014) Astrocytic TDP-43 pathology in Alexander disease. J Neurosci 34, 6448-6458
53. Lee, E. B., Lee, V. M., and Trojanowski, J. Q. (2011) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13, 38-50
54. Bugiani, M., Boor, I., van Kollenburg, B., Postma, N., Polder, E., van Berkel, C., van Kesteren, R. E., Windrem, M. S., Hol, E. M., Scheper, G. C., Goldman, S. A., and van der Knaap, M. S. (2010) Defective Glial Maturation in Vanishing White Matter Disease. J Neuropathol Exp Neurol
55. Bugiani, M., Vuong, C., Breur, M., and van der Knaap, M. S. (2018) Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain pathology 28, 408-421
56. Huyghe, A., Horzinski, L., Henaut, A., Gaillard, M., Bertini, E., Schiffmann, R., Rodriguez, D., Dantal, Y., Boespflug-Tanguy, O., and Fogli, A. (2012) Developmental splicing deregulation in leukodystrophies related to EIF2B mutations. PLoS One 7, e38264
57. Perng, M. D., Cairns, L., van den, I. P., Prescott, A., Hutcheson, A. M., and Quinlan, R. A. (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 112 ( Pt 13), 2099-2112
58. Hayashi, J., and Carver, J. A. (2020) The multifaceted nature of alphaB-crystallin. Cell stress & chaperones 25, 639-654
59. Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., and Hemmings, B. A. (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15, 6541-6551
60. Alessi, D. R., and Cohen, P. (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8, 55-62
61. Li, L. B., Toan, S. V., Zelenaia, O., Watson, D. J., Wolfe, J. H., Rothstein, J. D., and Robinson, M. B. (2006) Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. J Neurochem 97, 759-771
62. Brenner, M., Goldman, J. E., Quinlan, R. A., and Messing, A. (2008) Alexander disease: a genetic disorder of astrocytes. in Astrocytes in pathophysiology of the nervous system (Parpura, V. H., and Haydon, P. G. eds.), Springer, Boston, Massachusetts, USA. pp
63. Hagemann, T. L., Connor, J. X., and Messing, A. (2006) Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci 26, 11162-11173
Chapter 5
1. Sofroniew, M. V. (2014) Astrogliosis Cold Spring Harbor perspectives in biology 10.1101/cshperspect.a020420
2. Hol, E. M., andCapetanaki, Y. (2017) Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin Cold Spring Harbor perspectives in biology 9, 10.1101/cshperspect.a021642
3. Eliasson, C., Sahlgren, C., Berthold, C. H., Stakeberg, J., Celis, J. E., Betsholtz, C. et al. (1999) Intermediate filament protein partnership in astrocytes J Biol Chem 274, 23996-24006
4. Thomsen, R., Pallesen, J., Daugaard, T. F., Borglum, A. D., andNielsen, A. L. (2013) Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin Glia 61, 1922-1937
5. Jing, R., Wilhelmsson, U., Goodwill, W., Li, L., Pan, Y., Pekny, M., andSkalli, O. (2007) Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks J Cell Sci 120, 1267-1277
6. Hol, E. M., andPekny, M. (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system Curr Opin Cell Biol 32, 121-130
7. Perng, M. D., Wen, S. F., Gibbon, T., Middeldorp, J., Sluijs, J., Hol, E. M., and Quinlan, R. A. (2008) Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association Mol Biol Cell 19, 4521-4533
8. Roelofs, R. F., Fischer, D. F., Houtman, S. H., Sluijs, J. A., Van Haren, W., Van Leeuwen, F. W., andHol, E. M. (2005) Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton Glia 52, 289-300
9. Brenner, M. (2014) Role of GFAP in CNS injuries Neurosci Lett 565, 7-13
10. Liedtke, W., Edelmann, W., Bieri, P. L., Chiu, F. C., Cowan, N. J., Kucherlapati, R., andRaine, C. S. (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination Neuron 17, 607-615
11. Nawashiro, H., Messing, A., Azzam, N., andBrenner, M. (1998) Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury Neuroreport 9, 1691-1696,
12. Gomi, H., Yokoyama, T., Fujimoto, K., Ikeda, T., Katoh, A., Itoh, T., andItohara, S. (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions Neuron 14, 29-41
13. Pekny, M., Leveen, P., Pekna, M., Eliasson, C., Berthold, C. H., Westermark, B., andBetsholtz, C. (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally EMBO J 14, 1590-1598
14. McCall, M. A., Gregg, R. G., Behringer, R. R., Brenner, M., Delaney, C. L., Galbreath, E. J. et al. (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology Proc Natl Acad Sci U S A 93, 6361-6366,
15. Messing, A., Head, M. W., Galles, K., Galbreath, E. J., Goldman, J. E., andBrenner, M. (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice Am J Pathol 152, 391-398
16. Brenner, M., Johnson, A. B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J. E., andMessing, A. (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease Nat Genet 27, 117-120
17. Tomokane, N., Iwaki, T., Tateishi, J., Iwaki, A., andGoldman, J. E. (1991) Rosenthal fibers share epitopes with alpha B-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold Am J Pathol 138, 875-885
18. Pekny, T., Faiz, M., Wilhelmsson, U., Curtis, M. A., Matej, R., Skalli, O., andPekny, M. (2014) Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease APMIS 122, 76-80
19. Tian, R., Gregor, M., Wiche, G., andGoldman, J. E. (2006) Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease Am J Pathol 168, 888-897
20. Iwaki, T., Kume-Iwaki, A., Liem, R. K., andGoldman, J. E. (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain Cell 57, 71-78
21. Iwaki, T., Iwaki, A., Tateishi, J., Sakaki, Y., andGoldman, J. E. (1993) Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers Am J Pathol 143, 487-495
22. Walker, A. K., Daniels, C. M., Goldman, J. E., Trojanowski, J. Q., Lee, V. M., andMessing, A. (2014) Astrocytic TDP-43 pathology in Alexander disease J Neurosci 34, 6448-6458
23. Heaven, M. R., Flint, D., Randall, S. M., Sosunov, A. A., Wilson, L., Barnes, S. et al. (2016) Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease J Proteome Res 15, 2265-2282
24. Zatloukal, K., Stumptner, C., Fuchsbichler, A., Heid, H., Schnoelzer, M., Kenner, L. et al. (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases Am J Pathol 160, 255-263
25. Inagaki, M., Nakamura, Y., Takeda, M., Nishimura, T., andInagaki, N. (1994) Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation Brain pathology 4, 239-243
26. Takemura, M., Gomi, H., Colucci-Guyon, E., andItohara, S. (2002) Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice J Neurosci 22, 6972-6979 20026743
27. Yasui, Y., Amano, M., Nagata, K., Inagaki, N., Nakamura, H., Saya, H. et al. (1998) Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments J Cell Biol 143, 1249-1258
28. Battaglia, R. A., Beltran, A. S., Delic, S., Dumitru, R., Robinson, J. A., Kabiraj, P. et al. (2019) Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity Elife 8, 10.7554/eLife.47789
29. Brenner, M., andNicholas, A. P. (2017) The significance of deiminated GFAP in neurodegenerative diseases with special emphasis on Alexander disease In Protein deimination in human health and disease, Nicholas AP, Bhattacharya SK, Thompson PR, eds. Springer-Verlag, 391-412
30. Palko, S. I., Saba, N. J., Mullane, E., Nicholas, B. D., Nagasaka, Y., Ambati, J. et al. (2022) Compartmentalized citrullination in Muller glial endfeet during retinal degeneration Proc Natl Acad Sci U S A 119, 10.1073/pnas.2121875119
31. Wizeman, J. W., Nicholas, A. P., Ishigami, A., andMohan, R. (2016) Citrullination of glial intermediate filaments is an early response in retinal injury Molecular vision 22, 1137-1155
32. Castellani, R. J., Perry, G., Harris, P. L., Cohen, M. L., Sayre, L. M., Salomon, R. G., andSmith, M. A. (1998) Advanced lipid peroxidation end-products in Alexander's disease Brain Res 787, 15-18
33. Castellani, R. J., Perry, G., Harris, P. L., Monnier, V. M., Cohen, M. L., andSmith, M. A. (1997) Advanced glycation modification of Rosenthal fibers in patients with Alexander disease Neurosci Lett 231, 79-82
34. Viedma-Poyatos, A., de Pablo, Y., Pekny, M., andPerez-Sala, D. (2018) The cysteine residue of glial fibrillary acidic protein is a critical target for lipoxidation and required for efficient network organization Free Radic Biol Med 120, 380-394
35. Viedma-Poyatos, A., Gonzalez-Jimenez, P., Pajares, M. A., andPerez-Sala, D. (2022) Alexander disease GFAP R239C mutant shows increased susceptibility to lipoxidation and elicits mitochondrial dysfunction and oxidative stress Redox Biol 55, 102415
36. Goldman, J. E., andCorbin, E. (1991) Rosenthal fibers contain ubiquitinated alpha B-crystallin Am J Pathol 139, 933-938
37. Omary, M. B., Coulombe, P. A., andMcLean, W. H. (2004) Intermediate filament proteins and their associated diseases N Engl J Med 351, 2087-2100
38. Omary, M. B., Ku, N. O., Strnad, P., andHanada, S. (2009) Toward unraveling the complexity of simple epithelial keratins in human disease J Clin Invest 119, 1794-1805
39. Goldfarb, L. G., andDalakas, M. C. (2009) Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease J Clin Invest 119, 1806-1813
40. Trojanowski, J. Q., andLee, V. M. (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia Archives of neurology 55, 151-152
41. Snider, N. T., andOmary, M. B. (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions Nat Rev Mol Cell Biol 15, 163-177
42. Lin, N. H., Messing, A., andPerng, M. D. (2017) Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP PLoS One 12, e0180694
43. Sies, H., andJones, D. P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents Nat Rev Mol Cell Biol 21, 363-383
44. Lin, N. H., Yang, A. W., Chang, C. H., andPerng, M. D. (2021) Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function FASEB J 35, e21614
45. Hagemann, T. L., Powers, B., Lin, N. H., Mohamed, A. F., Dague, K. L., Hannah, S. C. et al. (2021) Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment Sci Transl Med 13, eabg4711
46. Minakawa, E. N., Popiel, H. A., Tada, M., Takahashi, T., Yamane, H., Saitoh, Y. et al. (2020) Arginine is a disease modifier for polyQ disease models that stabilizes polyQ protein conformation Brain 143, 1811-1825
47. Hawkins, C. L., andDavies, M. J. (2019) Detection, identification, and quantification of oxidative protein modifications J Biol Chem 294, 19683-19708
48. Yang, A. W., Lin, N. H., Yeh, T. H., Snider, N., andPerng, M. D. (2022) Effects of Alexander disease-associated mutations on the assembly and organization of GFAP intermediate filaments Mol Biol Cell 33, ar69
49. Hesse, M., Grund, C., Herrmann, H., Brohl, D., Franz, T., Omary, M. B., andMagin, T. M. (2007) A mutation of keratin 18 within the coil 1A consensus motif causes widespread keratin aggregation but cell type-restricted lethality in mice Exp Cell Res 313, 3127-3140
50. Schietke, R., Brohl, D., Wedig, T., Mucke, N., Herrmann, H., andMagin, T. M. (2006) Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis Eur J Cell Biol 85, 1-10,
51. Herrmann, H., andAebi, U. (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds Annu Rev Biochem 73, 749-789,
52. Hsiao, V. C., Tian, R., Long, H., Der Perng, M., Brenner, M., Quinlan, R. A., andGoldman, J. E. (2005) Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP J Cell Sci 118, 2057-2065,
53. Perng, M., Su, M., Wen, S. F., Li, R., Gibbon, T., Prescott, A. R. et al. (2006) The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27 Am J Hum Genet 79, 197-213
54. Tang, G., Xu, Z., andGoldman, J. E. (2006) Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease J Biol Chem 281, 38634-38643,
55. Hagemann, T. L., Connor, J. X., andMessing, A. (2006) Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response J Neurosci 26, 11162-11173,
56. Hagemann, T. L., Gaeta, S. A., Smith, M. A., Johnson, D. A., Johnson, J. A., andMessing, A. (2005) Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction Hum Mol Genet 14, 2443-2458
57. Ross, C. A., andPoirier, M. A. (2004) Protein aggregation and neurodegenerative disease Nat Med 10 Suppl, S10-17
58. Cohen, T. J., Hwang, A. W., Unger, T., Trojanowski, J. Q., andLee, V. M. (2012) Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking EMBO J 31, 1241-1252
59. Goldman, J. E., andCorbin, E. (1988) Isolation of a major protein component of Rosenthal fibers Am J Pathol 130, 569-578
60. Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A. et al. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome Mol Cell 44, 325-340
61. Mahammad, S., Murthy, S. N., Didonna, A., Grin, B., Israeli, E., Perrot, R. et al. (2013) Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation J Clin Invest 123, 1964-1975
62. Kaiser, P., andTagwerker, C. (2005) Is this protein ubiquitinated? Methods Enzymol 399, 243-248
63. Mamsa, S. S. A., andMeloni, B. P. (2021) Arginine and Arginine-Rich Peptides as Modulators of Protein Aggregation and Cytotoxicity Associated With Alzheimer's Disease Front Mol Neurosci 14, 759729
64. Tang, G., Perng, M. D., Wilk, S., Quinlan, R., andGoldman, J. E. (2010) Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition J Biol Chem 285, 10527-10537
65. Thibaudeau, T. A., Anderson, R. T., andSmith, D. M. (2018) A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers Nature communications 9, 1097 10.1038/s41467-018-03509-0
66. Messing, A. (2019) Refining the concept of GFAP toxicity in Alexander disease J Neurodev Disord 11, 27
Chapter 6
1. Alexander, W. S. (1949) Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain 72, 373-381, 373 pl
2. Verkhratsky, A., Sofroniew, M. V., Messing, A., deLanerolle, N. C., Rempe, D., Rodriguez, J. J., and Nedergaard, M. (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN neuro 4
3. Messing, A. (2019) Refining the concept of GFAP toxicity in Alexander disease. J Neurodev Disord 11, 27
4. Hagemann, T. L. (2022) Alexander disease: models, mechanisms, and medicine. Current opinion in neurobiology 72, 140-147