研究生: |
林昌儀 Lin, Chang-Yi |
---|---|
論文名稱: |
MTF-1之SIM結構對SUMO化MTF-1表達及純化的影響 Effect of SIM on the expression and purification of SUMOylated MTF-1 |
指導教授: |
林立元
Lin, Lih-Yuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 金屬感應轉錄因子 、類小泛素修飾化 、類小泛素 、共同轉型 、類小泛素交互作用區 |
外文關鍵詞: | SUMOylation, SUMO, MTF-1, Co-transform, SIM, in vivo SUMOylation system, SUMO-interacting motif |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬感應轉錄因子 (MTF-1) 調控體內多個影響金屬平衡及氧化壓力的基因。實驗室研究指出金屬感應轉錄因子可以被類泛素蛋白 (SUMO) 所修飾,進而影響其轉錄活性。我們試圖表現並純化受SUMO所修飾的金屬感應轉錄因子,以進行SUMOylation後對其生理功能上影響之研究。在我們的實驗中,將MTF-1以及in vivo SUMOylation system共同轉型表現到大腸桿菌中。測試經過不同誘導條件下可獲得表現量最高的誘導條件,但純化的步驟中發現會受到未被SUMO修飾之MTF-1的汙染。分析MTF-1之胺基酸序列發現MTF-1之C端具有SUMO-interaction motif (SIM) 能與SUMO產生厭水性交互作用,並且證實SUMOylated MTF-1會透過SIM與MTF-1結合,因而難以純化SUMOylated MTF-1wt,同時SIM與SUMO間的交互作用也會抑制MTF-1之SUMOylation。我們以EMSA實驗比較MTF-1wt與SIM mutant MTF-1於DNA結合能力上之差異性,結果發現無明顯差異,並且SUMOylated SIM mutant MTF-1不藉由CHO-K1細胞萃取液協助即與metal-response element (MRE) 探針結合。顯示SUMOylated MTF-1轉錄活性下降並非由於MTF-1與DNA結合能力下降,而是透過別種方式改變MTF-1轉錄活性。結果顯示SUMOylated MTF-1與MTF-1間的交互作用可能是調控MTF-1的重要因素。
Metal-responsive transcriptional factor 1 (MTF-1) regulates a variety of genes involved in metal homeostasis and oxidative stress. Recently, we have demonstrated that MTF-1 can be SUMOylated and resulted in an alternation of the transcriptional activity. We attempted to express and purify SUMOylated MTF-1 for functional study. In our experiment, MTF-1 and the in vivo SUMOylation system were co-expressed into E. coli. Various conditions were examined to obtain the optimal production of the protein. However, purification of the SUMOylated product was unsuccessful since native MTF-1 consistently presented in the eluted fractions with the modified protein. Analysis of the MTF-1 primary sequence reveals a consensus SUMO-interaction motif (SIM) located at the carboxyl terminal region, which may interact with SUMO by hydrophobic interaction. Mutation at the SIM region caused the loss of interaction and thus SUMOylated MTF-1 can be isolated. This result susggests a cross-interaction of MTF-1 and its SUMO-conjugated product in the cells. DNA-binding activity of the native MTF-1 and SIM mutant was analyzed by electrophoretic mobility shift assay. Native MTF-1 binds DNA only when cell extract is present. However, SUMOylated MTF-1 can form complex directly with DNA. The result implies a formation of special conformation after SUMO modification that allows the MTF-1 to react with DNA.
Auf der Maur A, Belser T, Wang Y, Gunes C, Lichtlen P, Georgiev O, Schaffner W (2000) Characterization of the mouse gene for the heavy metal-responsive transcription factor MTF-1. Cell Stress Chaperones 5: 196-206.
Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ, Kim KW (2004) Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 324: 394-400.
Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280: 275-286.
Bittel DC, Smirnova IV, Andrews GK (2000) Functional heterogeneity in the zinc fingers of metalloregulatory protein metal response element-binding transcription factor-1. Journal of Biological Chemistry 275: 37194-37201.
Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279: 27233-27238.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86: 2172-2175.
Chung TL, Hsiao HH, Yeh YY, Shia HL, Chen YL, Liang PH, Wang AH, Khoo KH, Shoei-Lung Li S (2004) In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein: definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides. J Biol Chem 279: 39653-39662.
Dalton TP, Li Q, Bittel D, Liang L, Andrews GK (1996a) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem 271: 26233-26241.
Dalton TP, Lio QW, Bittel D, Liang LC, Andrews GK (1996b) Oxidative stress activates metal-responsive transcription factor-1 binding activity - Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. Journal of Biological Chemistry 271: 26233-26241.
Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2: 233-239.
Desterro JM, Rodriguez MS, Kemp GD, Hay RT (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 274: 10618-10624.
Durnam DM, Palmiter RD (1981) Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem 256: 5712-5716.
Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3: R9-23.
Fowler BA (1988) Mechanisms of metal-induced renal cell injury: roles of high-affinity metal-binding proteins. Contrib Nephrol 64: 83-92.
Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947-956.
Giedroc DP, Chen X, Apuy JL (2001) Metal response element (MRE)-binding transcription factor-1 (MTF-1): structure, function, and regulation. Antioxid Redox Signal 3: 577-596.
Gill G (2003) Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Current opinion in genetics & development 13: 108-113.
Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276: 18513-18518.
Green CJ, Lichtlen P, Huynh NT, Yanovsky M, Laderoute KR, Schaffner W, Murphy BJ (2001) Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res 61: 2696-2703.
Gunes C, Heuchel R, Georgiev O, Muller KH, Lichtlen P, Bluthmann H, Marino S, Aguzzi A, Schaffner W (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17: 2846-2854.
Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280: 4102-4110.
Hardeland U, Steinacher R, Jiricny J, Schar P (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21: 1456-1464.
Hay RT (2005) SUMO: a history of modification. Mol Cell 18: 1-12.
Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281: 16117-16127.
Hershko A, Ciechanover A (1998) The ubiquitin system. Annual review of biochemistry 67: 425-479.
Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13: 2870-2875.
Hilgarth RS, Hong Y, Park-Sarge OK, Sarge KD (2003) Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification. Biochem Biophys Res Commun 303: 196-200.
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141.
Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276: 40263-40267.
Hussain S, Slikker W, Jr., Ali SF (1996) Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection. Neurochem Int 29: 145-152.
Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355-382.
Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16: 5509-5519.
Kerscher O (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 8: 550-555.
Kim ET, Kim KK, Matunis MJ, Ahn JH (2009) Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion. Biochem Biophys Res Commun 388: 41-45.
Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31: 371-382.
Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22: 5222-5234.
Kroetz MB, Hochstrasser M (2009) Identification of SUMO-interacting proteins by yeast two-hybrid analysis. Methods Mol Biol 497: 107-120.
Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275: 34803-34809.
LaRochelle O, Gagne V, Charron J, Soh JW, Seguin C (2001) Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem 276: 41879-41888.
Lichtlen P, Wang Y, Belser T, Georgiev O, Certa U, Sack R, Schaffner W (2001) Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res 29: 1514-1523.
Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM (2006a) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24: 341-354.
Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM (2006b) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Molecular Cell 24: 341-354.
Liu B, Shuai K (2008) Targeting the PIAS1 SUMO ligase pathway to control inflammation. Trends Pharmacol Sci 29: 505-509.
Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97-107.
Makhnevych T, Sydorskyy Y, Xin X, Srikumar T, Vizeacoumar FJ, Jeram SM, Li Z, Bahr S, Andrews BJ, Boone C, Raught B (2009) Global map of SUMO function revealed by protein-protein interaction and genetic networks. Mol Cell 33: 124-135.
Matunis MJ, Pickart CM (2005) Beginning at the end with SUMO. Nature Structural & Molecular Biology 12: 565-566.
Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140: 499-509.
Melchior F (2000) SUMO-N ONCLASSICAL U BIQUITIN. Annual Review of Cell and Developmental Biology 16: 591-626.
Meulmeester E, Melchior F (2008) Cell biology: SUMO. Nature 452: 709-711.
Mikolajczyk J, Drag M, Bekes M, Cao JT, Ronai Z, Salvesen GS (2007) Small ubiquitin-related modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs. J Biol Chem 282: 26217-26224.
Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275: 36316-36323.
Murphy BJ, Andrews GK, Bittel D, Discher DJ, McCue J, Green CJ, Yanovsky M, Giaccia A, Sutherland RM, Laderoute KR, Webster KA (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res 59: 1315-1322.
Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9: 769-779.
Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun 254: 693-698.
Otsuka F, Okugaito I, Ohsawa M, Iwamatsu A, Suzuki K, Koizumi S (2000) Novel responses of ZRF, a variant of human MTF-1, to in vivo treatment with heavy metals. Biochim Biophys Acta 1492: 330-340.
Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 337: 517-520.
Palmiter RD (1994) Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci U S A 91: 1219-1223.
Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108: 109-120.
Pichler A, Knipscheer P, Saitoh H, Sixma T, Melchior F (2004) The RanBP2 SUMO E3 ligase is neither HECT-nor RING-type. Nature structural & molecular biology 11: 984-991.
Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654-12659.
Ross S, Best JL, Zon LI, Gill G (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10: 831-842.
Sampson DA, Wang M, Matunis MJ (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276: 21664-21669.
Sapetschnig A, Rischitor G, Braun H, Doll A, Schergaut M, Melchior F, Suske G (2002) Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 21: 5206-5215.
Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277: 20438-20445.
Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. P Natl Acad Sci USA 99: 2872-2877.
Seeler JS, Dejean A (2001) SUMO: of branched proteins and nuclear bodies. Oncogene 20: 7243-7249.
Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4: 690-699.
Shen L, Tatham MH, Dong C, Zagorska A, Naismith JH, Hay RT (2006a) SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol 13: 1069-1077.
Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006b) The mechanisms of PML-nuclear body formation. Mol Cell 24: 331-339.
Song J, Zhang Z, Hu W, Chen Y (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280: 40122-40129.
Stuart GW, Searle PF, Chen HY, Brinster RL, Palmiter RD (1984) A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A 81: 7318-7322.
Takahashi H, Hatakeyama S, Saitoh H, Nakayama KI (2005) Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem 280: 5611-5621.
Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368-35374.
Uchimura Y, Nakamura M, Sugasawa K, Nakao M, Saitoh H (2004) Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem 331: 204-206.
Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. A role in transcriptional regulation. EMBO Rep 4: 137-142.
Wang YT, Chuang JY, Shen MR, Yang WB, Chang WC, Hung JJ (2008) Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process. J Mol Biol 380: 869-885.
Wei F, Scholer HR, Atchison ML (2007) Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 282: 21551-21560.
Westin G, Schaffner W (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J 7: 3763-3770.
Wrighton KH, Liang M, Bryan B, Luo K, Liu M, Feng XH, Lin X (2007) Transforming growth factor-beta-independent regulation of myogenesis by SnoN sumoylation. J Biol Chem 282: 6517-6524.
Yang M, Hsu CT, Ting CY, Liu LF, Hwang J (2006) Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem 281: 8264-8274.
Yu CW, Chen JH, Lin LY (1997) Metal-induced metallothionein gene expression can be inactivated by protein kinase C inhibitor. FEBS Lett 420: 69-73.
Zhao X, Sternsdorf T, Bolger TA, Evans RM, Yao TP (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25: 8456-8464.
Zhu J, Zhu S, Guzzo CM, Ellis NA, Sung KS, Choi CY, Matunis MJ (2008) Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J Biol Chem 283: 29405-29415.