簡易檢索 / 詳目顯示

研究生: 陳昶瑞
Chen, Chaang Ray
論文名稱: 以經驗模態分解改善時序基因晶片數據的週期訊號偵測與一個迴圈式實驗設計的基因晶片數據分析平台
Empirical mode decomposition improved periodicity detection for time-series microarray analysis and a web tool for loop-design microarray data analysis
指導教授: 許志楧
Hsu, Ian C.
口試委員: 許志楧
江啟勳
許文郁
黃鍔
黃鎮剛
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 126
中文關鍵詞: 經驗模態分解基因晶片時序基因晶片迴圈式實驗設計週期性表現基因蛋白質共同表現網路
外文關鍵詞: Empirical mode decomposition, microarray, time-series microarray, loop-design, periodically expressed gene, protein co-expression network
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微陣列基因晶片的科技進步,我們可以同時量測多達數萬個基因的表現。藉由在時序基因晶片實驗中尋找與探討具有週期表現的基因,可以幫助我們進一步了解,基因在轉譯體內所扮演的重要角色、以及其調控的機制。但是,時序基因晶片數據充滿著大量的雜訊。我們目前並沒有深入的了解,時序數據的結構是如何影響週期性訊號偵測方法的效能表現。

    本論文針對在時序基因晶片數據分析中,所面對的主要問題,並提出以經驗模態分解為基礎的新計算方法來探討這些難題。這些方法包括了:(1) 一個量化時序數據中震動複雜度的量測指標、(2) 一個在時序數據中搜尋週期性結構模式的演算方法,以及 (3) 建構週期性表現基因的蛋白質共同表現網路。

    我們將這些新方法應用一組已發表、探討酵母菌代謝週期的實驗數據上。我們解析每個基因時序數據中的本徵模式函數,並評估週期性訊號偵測方法的效能表現。我們的結果顯示,在原始發表的數據分析結果中,可能遺漏了多達1,469個週期表現的基因。而造成無法辨識這些週期表現基因的原因是:從時序數據中解析得出的本徵模式函數之間的干擾。這些無法被辨識的週期表現基因的功能以核醣體新生、核醣核酸加工為主。另外,藉由進一步分析部分基因的蛋白質共同表現網路,我們驗證了其中56個週期表現基因。我們的結論顯示,經驗模態分解可以應用於時序基因晶片數據分析,改善既有的週期性訊號偵測方法。在未來,還可以應用於其他的時序基因晶片數據。

    另外,在過去的文獻中曾指出,相較於基準參考式設計,迴圈式設計是更有效率、更可行的基因晶片實驗設計方法。但是,目前應用於迴圈設計基因晶片實驗的網站式數據分析工具是有限的。因此,我們依據迴圈設計基因晶片實驗所需求的統計與演算方法,建構了一個數據分析網站, THEME。它提了完整的工具,用來評估與視覺化基因晶片實驗數據的品質控管。透過直覺化的操作介面與流程,讓以生物學家為主的使用者,從上傳原始數據、到藉由複雜的統計分析來篩選具有顯著差異表現的基因,都可以輕鬆地完成。


    With recent advances of microarray technology, we are able to monitor the expression of thousands of genes simultaneously. Detecting periodic signals from time-series microarray data is commonly used to facilitate the understanding of the critical roles and underlying mechanisms of regulatory transcriptomes. However, time-series microarray data is noisy. In particular, how the temporal data structure affects the performance of periodicity detection has remained elusive.

    In this dissertation, we address key issues in time-series gene expression analysis. We present novel computational methods based on empirical mode decomposition (EMD) to meet the challenges in three areas (1) a metric to measure the complexity of oscillatory nature of time-series, (2) an algorithm to search periodic patterns from time-series, and (3) protein complex co-expression networks of periodically expressed genes.

    We applied these methods to the yeast metabolic cycle (YMC) dataset to extract a series of intrinsic mode function (IMF) oscillations from the time-series data and to evaluate performance of periodicity detection methods. Our results show that 1,469 periodically expressed genes might have been under-detected in the original analysis because of interference between decomposed IMF oscillations. Most of the under-detected genes were mainly associated with ribosome biogenesis and RNA processing. Additionally, validated by our protein complex coexpression analysis, we confirmed that 56 genes were newly determined as periodic. We demonstrated that EMD can be used incorporating with existing periodicity detection methods to improve their performance. Our EMD approach can be applied to other time-series microarray studies.

    In addition, a number of recent studies have shown that loop-design is more efficient than reference control design. However, limited loop-design web-based tools are available. We have developed the THEME that exploits all necessary data analysis tools for loop-design microarray studies. This web platform provides data assessment and visualization tools to evaluate the performance of microarray experimental procedures. Data analysis procedures, starting from uploading raw data files to retrieving DEG lists, can be flexibly operated with natural workflows with THEME.

    Abstract ...................................i 摘要 .......................................ii 致謝 .......................................iii Table of Content ...........................iv 1 Background 1 1.1 Microarray Technology....................................2 1.1.1 Biological Background ................................2 1.1.2 Experimental Design ..................................4 1.1.3 Gene Expression Analysis .............................6 1.2 Time-series Microarray Analysis ........................16 1.3 Empirical Mode Decomposition ...........................18 1.4 Protein Co-expression ..................................19 1.5 Gene Enrichment Analysis ...............................20 1.6 Our Approach ...........................................21 2 Analyzing Time-series Microarray data Using Empirical Mode Decomposition 23 2.1 Introduction ...........................................23 2.2 Methods ................................................26 2.2.1 Microarray Data Preprocessing .......................26 2.2.2 Empirical Mode Decomposition ........................27 2.2.3 Periodicity Detection ...............................27 2.2.4 Protein Complex Co-expression analysis ..............28 2.2.5 Gene Enrichment Analysis ............................29 2.3 Results ................................................29 2.3.1 Reanalysis of the Yeast Metabolic Cycle Dataset .....29 2.3.2 Non-periodic Probesets Exhibit a Higher Degree of Oscillations ........................................30 2.3.3 Identification of Under-detected Periodicity ........31 2.3.4 Validation of Under-detected Genes ..................32 2.3.5 Most Under-detected Genes Were Associated with the Oxidative Phase of the Metabolic Cycle ..............35 2.4 Discussion ................................................37 2.5 Conclusions ...............................................41 3 THEME: a web tool for loop-design microarray data analysis 43 3.1 Introduction ...........................................43 3.2 Statistical models and hypothesis test .................46 3.2.1 Log linear model ....................................46 3.2.2 Hypothesis testing ..................................49 3.3 Results ................................................51 3.3.1 Laboratory Information Management System ............51 3.3.2 Data quality assessment .............................53 3.3.3 Detection of differentially expressed genes .........55 3.3.4 Implementation ......................................57 3.3.5 Usage and documentation .............................58 3.3.6 THEME supported publications ........................59 3.4 Discussion .............................................65 3.5 Conclusions ............................................67 4 Conclusions 69 4.1 Summary ................................................69 4.2 Limitations and Future Directions ......................70 Figures ...........................................................75 Tables ...........................................................115 References .......................................................119

    1. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 413: 931-945
    2. Kitano H (2002) Computational systems biology. Nature 420: 206-210.
    3. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662-1664.
    4. Barkai N and Leibler S (1997) Robustness in simple biochemical networks. Nature 387: 913-917.
    5. Costanzo M et al. (2010) The genetic landscape of a cell. Science 327: 425-431.
    6. https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
    7. Ito T et al. (2000) Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 3:1143-1147.
    8. Stuart JM et al. (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302: 249-255.
    9. Ho JW et al. (2014) Comparative analysis of metazoan chromatin organization. Nature 512: 449-452.
    10. Lamb J et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929-1935.
    11. Edwards JS et al. (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2: 125-130.
    12. Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 2006: 2463-2472.
    13. Kerr MK, Churchill GA (2001) Statistical design and the analysis of gene expression microarray data. Genet Res 77: 123-128.
    14. Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 2: 183-201.
    15. Berrar DP (2003) A practical approach to microarray data analysis. New York: Kluwer academic Publishers. 20 p.
    16. http://mdc.custhelp.com/app/answers/detail/a_id/18883/~/genepix%C2%AE-file-formats
    17. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32: Suppl 496-501.
    18. Yang YH, Speed T (2002) Design issues for cDNA microarray experiments. Nat Rev Genet 3: 579-588.
    19. Smyth GK and Speed T (2003) Normalization of cDNA microarray data. Methods 4: 265-273.
    20. Yang YH et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30: e15
    21. Cheadle C et al. (2003) Analysis of microarray data using Z score transformation. J Mol Diagn 5: 73-81.
    22. Comander J et al. (2004) Improving the statistical detection of regulated genes from microarray data using intensity-based variance estimation. BMC Genomics 5: 17.
    23. Allison DB et al. (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7: 55-65.
    24. Cui X and Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4: 210.
    25. Tusher VG, Tibshirani R,and Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121.
    26. Pavlidis P (2003) Using ANOVA for gene selection from microarray studies of the nervous system. Methods 31: 282-298.
    27. Churchill GA (2004) Using ANOVA to analyze microarray data. Biotechniques 37: 173-175.
    28. Eisen MB et al. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863-14868.
    29. Thalamuthu A et al. (2006) Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics 22: 2405-2412.
    30. Zhao Y et al. (2013) ABCC3 as a marker for multidrug resistance in non-small cell lung cancer. Sci Rep 1: 3120.
    31. Chuaqui RF et al. (2002) Post-analysis follow-up and validation of microarray experiments. Nat Genet 32: 509-514.
    32. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207-210.
    33. MAQC Consortium (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24: 1151-1161.
    34. Canales RD et al. (2006) Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24: 1115-1122.
    35. Spellman PT et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 12: 3273-3297.
    36. Harmer SL et al. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 2110-2113.
    37. Tu BP et al. (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310: 1152-1158.
    38. Costanzo MC et al. (2014) Saccharomyces genome database provides new regulation data. Nucleic Acids Res 42: D717-725.
    39. Malumbres M and Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9: 153-166.
    40. Price C, Nasmyth K, and Schuster T (1991) A general approach to the isolation of cell cycle-regulated genes in the budding yeast, Saccharomyces cerevisiae. J Mol Biol 218: 543-556.
    41. Huang NE et al. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454: 903-995.
    42. Kim D and Oh HS (2009) EMD: A Package for Empirical Mode Decomposition and Hilbert Spectrum. The R Journal 1: 40-46.
    43. Wu Z et al. (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA 104: 14889–14894.
    44. Huang W et al. (2002) Matching gene activity with physiological functions. Proc Natl Acad Sci U S A 99: 2603-2608.
    45. Hu K et al. (2012) A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood flow regulation at multiple time scales. PLoS Comput Biol 8: e1002601.
    46. Stamoulis C and Betensky RA (2013) A novel signal processing approach for the detection of copy number variations in the human genome. Bioinformatics 27: 2338-2345.
    47. Sherlock G et al. (2001) The Stanford Microarray Database, Nucleic Acids Res 29: 152-155.
    48. Brazma A et al. (2003) ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31: 68-71.
    49. Hibbs MA et al. (2007) Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23: 2692-2699.
    50. Mewes HW et al. (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30: 31-34.
    51. Ashburner M et al. (2000) Gene ontology: tool for the unification of biology. Nat Genet 25: 25-29.
    52. Huang da W, Sherman BT, and Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1-13.
    53. Kanehisa M and Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27-30.
    54. Boyle EI et al. (2004) GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20: 3710-3715.
    55. Shi L et al. (2010) The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 28: 827-838.
    56. Cho RJ et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2: 65-73.
    57. Klevecz RR et al. (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci U S A 101: 1200-1205.
    58. Whitfield ML et al. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13: 1977-2000.
    59. Shedden K and Cooper S (2002) Analysis of cell-cycle gene expression in Saccharomyces cerevisiae using microarrays and multiple synchronization methods. Nucleic Acids Res 30: 2920-2929.
    60. Bar-Joseph Z et al. (2004) Deconvolving cell cycle expression data with complementary information. Bioinformatics 20 (Suppl 1): i23-i30.
    61. Soranzo N et al. (2009) mRNA stability and the unfolding of gene expression in the long-period yeast metabolic cycle. BMC Syst Biol 3: 18.
    62. Cacace F et al. (2012) Stochastic modeling of expression kinetics identifies messenger half-lives and reveals sequential waves of co-ordinated transcription and decay. PLoS Comput Biol 8: e1002772.
    63. de Lichtenberg U et al. (2005) New weakly expressed cell cycle-regulated genes in yeast. Yeast 22: 1191-1201.
    64. Csikasz-Nagy A (2009) Computational systems biology of the cell cycle. Brief Bioinform 10: 424-434.
    65. de Lichtenberg U et al. (2005) Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21: 1164-1171.
    66. Marguerat et al. (2006) The more the merrier: comparative analysis of microarray studies on cell cycle-regulated genes in fission yeast. Yeast 23: 261-277.
    67. Fulcher BD, Little MA, and Jones NS (2013) Highly comparative time-series analysis: the empirical structure of time series and their methods. J R Soc Interface 10: 20130048.
    68. Deckard et al. (2013) Design and analysis of large-scale biological rhythm studies: a comparison of algorithms for detecting periodic signals in biological data. Bioinformatics 29: 3174-3180.
    69. Teodoro D and Lovis C (2013) Empirical Mode Decomposition and k-Nearest Embedding Vectors for Timely Analyses of Antibiotic Resistance Trends. PLoS One 8: e61180.
    70. Lin SL, Tung PC, and Huang NE (2009) Data analysis using a combination of independent component analysis and empirical mode decomposition. Phys Rev E Stat Non lin Soft Matter Phys 79: 066705.
    71. Sweeney-Reed CM et al. (2012) Neural correlates of true and false memory in mild cognitive impairment. PLoS One 7: e48357.
    72. Yang AC et al. (2011) Temporal associations between weather and headache: analysis by empirical mode decomposition. PLoS One 6: e14612.
    73. Shawa AK et al. (2013) A Novel EMD based Watermarking of Fingerprint Biometric Using GEP. Procedia Tech 10: 172–183
    74. Wang YF, Yu ZG, and Anh V (2013) Fuzzy C-means method with empirical mode decomposition for clustering microarray data. Int J Data Min Bioinform 7: 103-117.
    75. Gautier L et al. (2004) affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307-315.
    76. Gentleman RC et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
    77. Liu CT, Yuan S, and Li KC (2009) Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae. Nucleic Acids Res 37: 526-532.
    78. Park Y and Bader JS (2012) How networks change with time. Bioinformatics 28: i40-i48.
    79. Futschik ME and Herzel H (2008) Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis. Bioinformatics 24: 1063-1069.
    80. Mattick JS: The genetic signatures of noncoding RNAs. PLoS Genet. 2009 Apr;5(4):e1000459.
    81. Amaral PP, Dinger ME, Mattick JS: Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics. 2013 May;12(3):254-78.
    82. Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, Ohta K: Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature. 2008 Nov 6;456(7218):130-4
    83. Thebault P, Boutin G, Bhat W, Rufiange A, Martens J, Nourani A: Transcription regulation by the noncoding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNA polymerase II. Mol Cell Biol. 2011 Mar;31(6):1288-300.
    84. Lee JY, Rohlman CE, Molony LA, Engelke DR: Characterization of RPR1, an essential gene encoding the RNA component of Saccharomyces cerevisiae nuclear RNase P. Mol Cell Biol. 1991 Feb;11(2):721-30.
    85. Singer MS, Gottschling DE: TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science. 1994 Oct 21;266(5184):404-9.
    86. Dequeant ML et al. (2008) Comparison of Pattern Detection Methods in Microarray Time Series of the Segmentation Clock. PLoS One 3: e2856.
    87. Kudlicki A, Rowicka M, and Otwinowski Z (2007) SCEPTRANS: an online tool for analyzing periodic transcription in yeast. Bioinformatics 12: 1559-1561.
    88. Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl 490-495.
    89. Hutter S et al. (2008) Gene expression variation in African and European populations of Drosophila melanogaster. Genome Biol 9: R12.
    90. Oleksiak MF, Roach JL, and Crawford DL (2005) Natural variation in cardiac metabolism and gene expression in Fundulus heteroclitus. Nat Genet 37: 67-72.
    91. Townsend JP (2003) Multifactorial experimental design and the transitivity of ratios with spotted DNA microarrays. BMC Genomics 4: 41.
    92. Whitehead A, Crawford DL (2005) Variation in tissue-specific gene expression among natural populations. Genome Biol 6: R13.
    93. Clark TA and Townsend JP (2007) Quantifying variation in gene expression. Mol Ecol 16: 2613-2616.
    94. Tempelman RJ (2005) Assessing statistical precision, power, and robustness of alternative experimental designs for two color microarray platforms based on mixed effects models. Vet. Immunol Immunopathol 105: 175-186.
    95. Vinciotti V et al. (2005) An experimental evaluation of a loop versus a reference design for two-channel microarrays. Bioinformatics 21: 492-501.
    96. Wit E, McClure J (2004) Statistical design of microarrays, in: Statistics for Microarrays: Design, Analysis and Inference., John Wiley & Sons, Chichester; Hoboken, NJ, pp. 23-56.
    97. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.
    98. Smyth GK (2005) Limma: linear models for microarray data, in: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (Ed.) Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, NY, pp. 397-420.
    99. Wettenhall JM, Smyth GK (2004) limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20: 3705-3706.
    100. Brazma A et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29: 365-371.
    101. Hokamp K et al. (2004) ArrayPipe: a flexible processing pipeline for microarray data, Nucleic Acids Res 32: W457-459.
    102. Killion PJ, Sherlock G, and Iyer VR (2003) The Longhorn Array Database (LAD): an open-source, MIAME compliant implementation of the Stanford Microarray Database (SMD). BMC Bioinformatics 4: 32.
    103. Herrero J et al. (2003) GEPAS: A web-based resource for microarray gene expression data analysis. Nucleic Acids Res 31: 3461-3467.
    104. Saal LH (2002) BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol 3: SOFTWARE0003.
    105. Rainer J et al. (2006) CARMAweb: comprehensive R- and bioconductor-based web service for microarray data analysis. Nucleic Acids Res 34: W498-503.
    106. Xia X, McClelland M, and Wang Y (2005) WebArray: an online platform for microarray data analysis. BMC Bioinformatics 6: 306.
    107. Argraves GL et al. (2005) ArrayQuest: a web resource for the analysis of DNA microarray data. BMC Bioinformatics 6: 287.
    108. Maurer M et al. (2005) MARS: microarray analysis, retrieval, and storage system. BMC Bioinformatics 6: 101.
    109. Greer KA et al. (2006) CARMA: A platform for analyzing microarray datasets that incorporate replicate measures. BMC Bioinformatics 7: 149.
    110. Romualdi C et al. (2005) MIDAW: a web tool for statistical analysis of microarray data. Nucleic Acids Res 33: W644-649.
    111. Yang IV et al. (2002) Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol 3: research0062.
    112. Benjamini Y and Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57: 289-300.
    113. Tsai ML et al. (2009) UVB radiation induces persistent activation of ribosome and oxidative phosphorylation pathways. Radiat Res 171: 716-724.
    114. Chang CW et al. (2013) Comparative transcriptome profiling of an SV40-transformed human fibroblast (MRC5CVI) and its untransformed counterpart (MRC-5) in response to UVB irradiation. PLoS One 8: e73311.
    115. Li CY et al. (2011) Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment. PLoS One 7: e40824.
    116. Cheng WC et al. (2012) Intra- and inter-individual variance of gene expression in clinical studies. PLoS One 7: e38650.
    117. Huang CY et al. (2014) Extremely low-frequency electromagnetic fields cause G1 phase arrest through the activation of the ATM-Chk2-p21 pathway. PLoS One 9: e104732.
    118. Wu Z and Huang NE (2009) Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1: 1.
    119. Wu Z and Huang NE (2004) A study of the characteristics of white noise using the empirical mode decomposition method. Proc R Soc Lond A 460: 1597–1611.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE