研究生: |
陳則劭 Chen, Tse Shao |
---|---|
論文名稱: |
整合式微流體晶片用於腫瘤轉移與血管新生之研究 An Integrated Microfluidic Chip for The Study of Metastasis and Angiogenesis |
指導教授: |
劉承賢
Liu, Cheng Hsien |
口試委員: |
盧向成
Lu, Shiang Cheng 李岡遠 Lee, Kang Yun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 肺癌細胞 、血管新生 、細胞圖案化定義 、血管內皮細胞 、細胞外基質 |
外文關鍵詞: | Lung cancer, Angiogenesis, Pattern, Vascular Endothelial Cell, Extracellular Matrix (ECM) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
惡性腫瘤的罹患率和致死率連年增高,其中肺癌更是所有癌症中造成死亡的絕大多數。醫學上致力於研究相關的因應對策,運用化療、放射治療、外科手術等方法治療癌症,其後遺症與治癒率都讓癌症病患為之失望。在醫學不斷進步下,近年發展出許多新的癌症治療方式,根據文獻以及臨床醫學,因腫瘤而實現新生血管的能力一直以來在癌症的生物訊息被認為是重要的標記,因此使用細胞分子作為標地的新癌症治療方法抑制腫瘤的新血管生成,可為癌症病患帶來新的契機。
隨著微機電技術的蓬勃發展,組織重建以仿效真實生物體內應有組織功能的體外模型得以實現,使得這些基於細胞的檢測數據將更具生物學的意義,並且對許多病患來說,可以在體外進行細胞的藥物篩選或找尋合適的治療方式,來預期治療的效果是理想的情況,也可避免掉許多法律問題與道德爭議,因此本論文以整合微流體系統的生醫晶片,並利用生醫微機電技術與微製程技術操控細胞圖案化定義,提供精準的細胞空間定位,在體外實現腫瘤細胞微環境的重構,探討腫瘤組織與血管內皮細胞相互作用,並定義細胞外基質剛性影響新生血管的關鍵性因素,以模擬腫瘤與新生血管成形的區域,細胞遷移的情形,有助於提供腫瘤臨床用藥或治療的資訊。
Cancer results from the uncontrolled growth of abnormal cells in the body. The death rate caused due to cancer has been rising every year. Lung cancer among all cancers has the most significant impact on death of people affected by cancer. The diagnostics are committed to develop cure strategies. Although there are many remedies to treat different kind of cancer such as surgery, radiation and chemotherapy, but the success rate is still low. With the advance in medical approach, there are many new cancer treatments which have been developed in recent years. According to the literature survey and clinical experts’ comments, the ability of a tumor to achieve vascularization is an essential hallmark of cancer biology. Recently, cell-based therapy has been getting important for the inhibition of tumor angiogenesis. It can be a ray of hope to cure cancer for patients suffering from cancer.
With the rapid development in MEMS technology, tissue reconstruction can be realized in vitro which can mimic the biological function in vivo and enable biologically meaningful data to be extracted during cell-based assays. For some patients, predicting the outcome of a treatment by performing in vitro cellular drug screening or trying to find the other suitable therapy is desirable, as it can avoid the problem of legal and ethical controversies. In this study, we try to integrate the microfluidic bio-chip, the manipulation of cells via dielectrophoresis patterning, bio-MEMS and photolithography techniques. The spatial orientation arrangement of cells via the cell patterning technique developed in our group was used to realize the reconstruction of tumor microenvironment. We can not only use this model to study the cell interaction of the cancer cell and the vascular endothelial cell but also define the mechanical stiffness of ECM that will influence the angiogenesis. At the same time, it can mimic the area of tumor angiogenesis where the cell migration phenomenon appears. It will provide pharmaceutical information and aid in drug discovery for cancer. The development in this research will provide pharmaceutical information and aid in drug discovery for cancer treatment.
[1] P. Carmeliet, "Angiogenesis in health and disease," Nat Med, vol. 9, pp. 653-60, 2003.
[2] D. Hanahan and R. A. Weinberg, "The hallmarks of cancer," Cell, vol. 100, pp. 57-70, 2000.
[3] J. Folkman, "Tumor angiogenesis: therapeutic implications," N Engl J Med, vol. 285, pp. 1182-6, 1971.
[4] G. Bergers and L. E. Benjamin, "Tumorigenesis and the angiogenic switch," Nat Rev Cancer, vol. 3, pp. 401-10, 2003.
[5] H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, and C. Betsholtz, "VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia," J Cell Biol, vol. 161, pp. 1163-77, 2003.
[6] C.-L. E. Helm, M. E. Fleury, A. H. Zisch, F. Boschetti, and M. A. Swartz, "Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 15779-15784, November 1, 2005 2005.
[7] N. Yamamura, R. Sudo, M. Ikeda, and K. Tanishita, "Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells," Tissue Eng, vol. 13, pp. 1443-53, 2007.
[8] M. H. Zaman, L. M. Trapani, A. L. Sieminski, D. MacKellar, H. Gong, R. D. Kamm, A. Wells, D. A. Lauffenburger, and P. Matsudaira, "Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis," Proceedings of the National Academy of Sciences, vol. 103, pp. 10889-10894, July 18, 2006 2006.
[9] S. A. Eccles, "Targeting key steps in metastatic tumour progression," Curr Opin Genet Dev, vol. 15, pp. 77-86, 2005.
[10] M. Cristofanilli, C. Charnsangavej, and G. N. Hortobagyi, "Angiogenesis modulation in cancer research: novel clinical approaches," Nat Rev Drug Discov, vol. 1, pp. 415-26, 2002.
[11] R. O. Hynes, "The Extracellular Matrix: Not Just Pretty Fibrils," Science, vol. 326, pp. 1216-1219, November 27, 2009 2009.
[12] D. E. Discher, P. Janmey, and Y.-l. Wang, "Tissue Cells Feel and Respond to the Stiffness of Their Substrate," Science, vol. 310, pp. 1139-1143, November 18, 2005 2005.
[13] P. A. Janmey and C. A. McCulloch, "Cell mechanics: integrating cell responses to mechanical stimuli," Annu Rev Biomed Eng, vol. 9, pp. 1-34, 2007.
[14] A. Mammoto, K. M. Connor, T. Mammoto, C. W. Yung, D. Huh, C. M. Aderman, G. Mostoslavsky, L. E. Smith, and D. E. Ingber, "A mechanosensitive transcriptional mechanism that controls angiogenesis," Nature, vol. 457, pp. 1103-8, 2009.
[15] C. M. Nelson and M. J. Bissell, "Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer," Annu Rev Cell Dev Biol, vol. 22, pp. 287-309, 2006.
[16] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, "Matrix elasticity directs stem cell lineage specification," Cell, vol. 126, pp. 677-89, 2006.
[17] M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, "Tensional homeostasis and the malignant phenotype," Cancer Cell, vol. 8, pp. 241-54, 2005.
[18] C. A. Reinhart-King, M. Dembo, and D. A. Hammer, "The dynamics and mechanics of endothelial cell spreading," Biophys J, vol. 89, pp. 676-89, 2005.
[19] J. Califano and C. Reinhart-King, "A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly," Cellular and Molecular Bioengineering, vol. 1, pp. 122-132, 2008/09/01 2008.
[20] A. L. Sieminski, R. P. Hebbel, and K. J. Gooch, "The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro," Exp Cell Res, vol. 297, pp. 574-84, 2004.
[21] C. M. Ghajar, X. Chen, J. W. Harris, V. Suresh, C. C. Hughes, N. L. Jeon, A. J. Putnam, and S. C. George, "The effect of matrix density on the regulation of 3-D capillary morphogenesis," Biophys J, vol. 94, pp. 1930-41, 2008.
[22] W. Risau, "Mechanisms of angiogenesis," Nature, vol. 386, pp. 671-4, 1997.
[23] S. Chung, R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm, "Cell migration into scaffolds under co-culture conditions in a microfluidic platform," Lab Chip, vol. 9, pp. 269-75, 2009.
[24] P. Vitorino and T. Meyer, "Modular control of endothelial sheet migration," Genes Dev, vol. 22, pp. 3268-81, 2008.
[25] A. Shamloo, N. Ma, M. M. Poo, L. L. Sohn, and S. C. Heilshorn, "Endothelial cell polarization and chemotaxis in a microfluidic device," Lab Chip, vol. 8, pp. 1292-9, 2008.
[26] R. R. Chen, E. A. Silva, W. W. Yuen, A. A. Brock, C. Fischbach, A. S. Lin, R. E. Guldberg, and D. J. Mooney, "Integrated approach to designing growth factor delivery systems," Faseb J, vol. 21, pp. 3896-903, 2007.
[27] V. Vickerman, J. Blundo, S. Chung, and R. Kamm, "Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging," Lab Chip, vol. 8, pp. 1468-77, 2008.
[28] A. Shamloo and S. C. Heilshorn, "Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients," Lab Chip, vol. 10, pp. 3061-8, 2010.
[29] M. N. Nakatsu, R. C. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Perez-del-Pulgar, P. M. Carpenter, and C. C. Hughes, "Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1," Microvasc Res, vol. 66, pp. 102-12, 2003.
[30] D. Walpita and E. Hay, "Studying actin-dependent processes in tissue culture," Nat Rev Mol Cell Biol, vol. 3, pp. 137-141, 2002.
[31] L. G. Griffith and M. A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nat Rev Mol Cell Biol, vol. 7, pp. 211-224, 2006.
[32] K. M. Yamada and E. Cukierman, "Modeling tissue morphogenesis and cancer in 3D," Cell, vol. 130, pp. 601-10, 2007.
[33] A. Abbott, "Cell culture: Biology's new dimension," Nature, vol. 424, pp. 870-872, 2003.
[34] N. Boudreau and M. J. Bissell, "Extracellular matrix signaling: integration of form and function in normal and malignant cells," Current Opinion in Cell Biology, vol. 10, pp. 640-646, 1998.
[35] E. Cukierman, R. Pankov, and K. M. Yamada, "Cell interactions with three-dimensional matrices," Current Opinion in Cell Biology, vol. 14, pp. 633-640, 2002.
[36] E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, "Taking cell-matrix adhesions to the third dimension," Science, vol. 294, pp. 1708-12, 2001.
[37] F. Wang, V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, R. Lupu, and M. J. Bissell, "Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology," Proceedings of the National Academy of Sciences, vol. 95, pp. 14821-14826, December 8, 1998 1998.
[38] I. Grigorieva, X. Thomas, and J. Epstein, "The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone," Exp Hematol, vol. 26, pp. 597-603, 1998.
[39] V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J. Bissell, "Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies," J Cell Biol, vol. 137, pp. 231-45, 1997.
[40] A. Birgersdotter, R. Sandberg, and I. Ernberg, "Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems," Semin Cancer Biol, vol. 15, pp. 405-12, 2005.
[41] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, "Matrix Elasticity Directs Stem Cell Lineage Specification," Cell, vol. 126, pp. 677-689, 2006.
[42] C. Xu, M. S. Inokuma, J. Denham, K. Golds, P. Kundu, J. D. Gold, and M. K. Carpenter, "Feeder-free growth of undifferentiated human embryonic stem cells," Nat Biotechnol, vol. 19, pp. 971-4, 2001.
[43] J. Taipale and J. Keski-Oja, "Growth factors in the extracellular matrix," The FASEB Journal, vol. 11, pp. 51-9, January 1, 1997 1997.
[44] F. G. Giancotti and E. Ruoslahti, "Integrin Signaling," Science, vol. 285, pp. 1028-1033, August 13, 1999 1999.
[45] S. Even-Ram and K. M. Yamada, "Cell migration in 3D matrix," Curr Opin Cell Biol, vol. 17, pp. 524-32, 2005.
[46] W. Saadi, S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," Biomed Microdevices, vol. 9, pp. 627-35, 2007.
[47] B. Mosadegh, C. Huang, J. W. Park, H. S. Shin, B. G. Chung, S. K. Hwang, K. H. Lee, H. J. Kim, J. Brody, and N. L. Jeon, "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir, vol. 23, pp. 10910-2, 2007.
[48] U. Haessler, Y. Kalinin, M. A. Swartz, and M. Wu, "An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies," Biomed Microdevices, vol. 11, pp. 827-35, 2009.
[49] V. V. Abhyankar, M. W. Toepke, C. L. Cortesio, M. A. Lokuta, A. Huttenlocher, and D. J. Beebe, "A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment," Lab on a Chip, vol. 8, pp. 1507-1515, 2008.
[50] J. M. Rutkowski and M. A. Swartz, "A driving force for change: interstitial flow as a morphoregulator," Trends in Cell Biology, vol. 17, pp. 44-50, 2007.
[51] J. D. Shields, M. E. Fleury, C. Yong, A. A. Tomei, G. J. Randolph, and M. A. Swartz, "Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling," Cancer Cell, vol. 11, pp. 526-38, 2007.
[52] R. Sudo, S. Chung, I. K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L. G. Griffith, and R. D. Kamm, "Transport-mediated angiogenesis in 3D epithelial coculture," Faseb J, vol. 23, pp. 2155-64, 2009.
[53] I. Zervantonakis, S. Chung, R. Sudo, M. Zhang, J. Charest, and R. Kamm, "Concentration gradients in microfluidic 3D matrix cell culture systems," International Journal of Micro-Nano Scale Transport, vol. 1, pp. 27-36, 2010.
[54] S. Chung, R. Sudo, V. Vickerman, I. K. Zervantonakis, and R. D. Kamm, "Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California," Ann Biomed Eng, vol. 38, pp. 1164-77, 2010.
[55] P. Carmeliet, "Mechanisms of angiogenesis and arteriogenesis," Nat Med, vol. 6, pp. 389-95, 2000.
[56] R. K. Jain, "Molecular regulation of vessel maturation," Nat Med, vol. 9, pp. 685-93, 2003.
[57] P. Carmeliet and M. Tessier-Lavigne, "Common mechanisms of nerve and blood vessel wiring," Nature, vol. 436, pp. 193-200, 2005.
[58] P. Carmeliet, "Blood vessels and nerves: common signals, pathways and diseases," Nat Rev Genet, vol. 4, pp. 710-20, 2003.
[59] I. Barkefors, S. Le Jan, L. Jakobsson, E. Hejll, G. Carlson, H. Johansson, J. Jarvius, J. W. Park, N. Li Jeon, and J. Kreuger, "Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis," J Biol Chem, vol. 283, pp. 13905-12, 2008.
[60] I. Barkefors, S. Thorslund, F. Nikolajeff, and J. Kreuger, "A fluidic device to study directional angiogenesis in complex tissue and organ culture models," Lab on a Chip, vol. 9, pp. 529-535, 2009.
[61] L. B. Wood, A. Das, R. D. Kamm, and H. H. Asada, "A stochastic broadcast feedback approach to regulating cell population morphology for microfluidic angiogenesis platforms," IEEE Trans Biomed Eng, vol. 56, pp. 2299-303, 2009.
[62] L. V. McIntire, "WTEC panel report on tissue engineering," Tissue Eng, vol. 9, pp. 3-7, 2003.
[63] L. G. Griffith and G. Naughton, "Tissue Engineering--Current Challenges and Expanding Opportunities," Science, vol. 295, pp. 1009-1014, February 8, 2002 2002.
[64] S. J. Hollister, "Porous scaffold design for tissue engineering," Nat Mater, vol. 4, pp. 518-24, 2005.
[65] A. D. Metcalfe and M. W. Ferguson, "Bioengineering skin using mechanisms of regeneration and repair," Biomaterials, vol. 28, pp. 5100-13, 2007.
[66] K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, and Y. Tano, "Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium," New England Journal of Medicine, vol. 351, pp. 1187-1196, 2004.
[67] A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 2480-2487, February 21, 2006 2006.
[68] C. P. Tan, B. R. Seo, D. J. Brooks, E. M. Chandler, H. G. Craighead, and C. Fischbach, "Parylene peel-off arrays to probe the role of cell-cell interactions in tumour angiogenesis," Integrative Biology, vol. 1, pp. 587-594, 2009.
[69] S. Li, S. Bhatia, Y. L. Hu, Y. T. Shiu, Y. S. Li, S. Usami, and S. Chien, "Effects of morphological patterning on endothelial cell migration," Biorheology, vol. 38, pp. 101-8, 2001.
[70] L. E. Dike, C. S. Chen, M. Mrksich, J. Tien, G. M. Whitesides, and D. E. Ingber, "Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates," In Vitro Cellular & Developmental Biology-Animal, vol. 35, pp. 441-448, Sep 1999.
[71] L. E. Dickinson, M. E. Moura, and S. Gerecht, "Guiding endothelial progenitor cell tube formation using patterned fibronectin surfaces," Soft Matter, vol. 6, pp. 5109-5119, 2010.
[72] C. A. Goubko and X. D. Cao, "Patterning multiple cell types in co-cultures: A review," Materials Science & Engineering C-Materials for Biological Applications, vol. 29, pp. 1855-1868, Aug 1 2009.
[73] D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides, "Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems," Proceedings of the National Academy of Sciences of the United States of America, vol. 97, pp. 2408-2413, Mar 14 2000.
[74] A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, "Printing patterns of proteins," Langmuir, vol. 14, pp. 2225-2229, Apr 28 1998.
[75] D. I. Rozkiewicz, Y. Kraan, M. W. Werten, F. A. de Wolf, V. Subramaniam, B. J. Ravoo, and D. N. Reinhoudt, "Covalent microcontact printing of proteins for cell patterning," Chemistry, vol. 12, pp. 6290-7, Aug 16 2006.
[76] L. E. Dickinson, C. Lutgebaucks, D. M. Lewis, and S. Gerecht, "Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro," Lab Chip, vol. 12, pp. 4244-8, Nov 7 2012.
[77] N. Mittal, A. Rosenthal, and J. Voldman, "nDEP microwells for single-cell patterning in physiological media," Lab Chip, vol. 7, pp. 1146-53, Sep 2007.
[78] D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, "Dielectrophoretic registration of living cells to a microelectrode array," Biosens Bioelectron, vol. 19, pp. 1765-74, 2004.
[79] D. R. Albrecht, V. L. Tsang, R. L. Sah, and S. N. Bhatia, "Photo- and electropatterning of hydrogel-encapsulated living cell arrays," Lab Chip, vol. 5, pp. 111-8, Jan 2005.
[80] J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, "A microfabrication-based dynamic array cytometer," Anal Chem, vol. 74, pp. 3984-90, Aug 15 2002.
[81] C. T. Ho, R. Z. Lin, W. Y. Chang, H. Y. Chang, and C. H. Liu, "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap," Lab Chip, vol. 6, pp. 724-34, Jun 2006.
[82] S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C. H. Liu, "Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis," Optics Letters, vol. 35, pp. 1959-1961, Jun 15 2010.
[83] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, Jul 21 2005.
[84] S. V. Sharma, D. A. Haber, and J. Settleman, "Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents," Nat Rev Cancer, vol. 10, pp. 241-53, Apr 2010.
[85] S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, "Dielectrophoretic Sorting of Particles and Cells in a Microsystem," Analytical Chemistry, vol. 70, pp. 1909-1915, 1998/05/01 1998.
[86] T. Matsue, N. Matsumoto, and I. Uchida, "Rapid micropatterning of living cells by repulsive dielectrophoretic force," Electrochimica Acta, vol. 42, pp. 3251-3256, 1997.
[87] P. R. C. Gascoyne and J. Vykoukal, "Particle separation by dielectrophoresis," Electrophoresis, vol. 23, pp. 1973-1983, Jul 2002.
[88] J. Crank, "The Mathematics of Diffusion. 2nd ed. ," 1980.
[89] https://www.atcc.org/Products/All/CCL-185.aspx
[90] http://www.atcc.org/Products/All/CRL-2868.aspx
[91] https://www.atcc.org/Products/All/CRL-1730.aspx
[92] https://www.atcc.org/Products/All/CCL-163.aspx