簡易檢索 / 詳目顯示

研究生: 劉昌盛
論文名稱: 母管角度及支架對動脈瘤模型之數值模擬
Numerical investigation of the aneurysm model with and without stent at different parent vessel angle
指導教授: 林昭安
口試委員: 牛仰堯
黃智永
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 56
中文關鍵詞: 動脈瘤母管角度支架數值模擬
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據行政院衛生署近期研究報告顯示,台灣地區腦血管疾病皆高居十大死因之第二位,其中又以動脈瘤破裂致死占大多數。其中血液動力因子普遍被認為與顱內動脈瘤之形成與破裂有關,然而部分重要的血液動力特性卻難以經由活體量測獲得,且一般動脈瘤模型很少根據母管角度變化進行探討。因此本文旨在以數值模擬探討動脈瘤在穩態及脈動瘤之不同入口條件,探討動脈瘤內流場、壁面剪應力及流量比的影響。計算上,脈動波形脈動流場參數中沃門斯里數(Womersley Number)為4.0,雷諾數變化範圍200~400。模擬結果顯示,加裝支架前,顯示出隨著母管角度增加,動脈瘤內流速、流入動脈瘤內體積流量及壁面剪應力有明顯增加的趨勢;加裝支架後,動脈瘤內流速、流入動脈瘤內體積流量及壁面剪應力有明顯減少的趨勢。


    摘要 ii Abstract iii 誌謝 iv 目錄 v 表目錄 vii 圖目錄 viii 符號與縮寫 xi 第一章緒論 1 1.1前言 1 1.2文獻回顧 4 1.2.1臨床研究 5 1.2.2模型實驗 8 1.2.3數值模擬 11 1.3 研究動機及目的 14 第二章血管流統御方程式及操作條件 15 2.1統御方程式 15 2.1.1 連續方程式 15 2.1.2動量方程式 16 2.2無因次參數 17 2.3流體參數及邊界條件設定 19 第三章 數值求解過程及參數設定 20 3.1計算網格製作及設定 20 3.2數值模擬 21 3.3動脈瘤幾何模型 23 3.4含動脈瘤之支架幾何模型 24 第四章 結果與討論 26 4.1網格獨立測試 26 4.2收斂標準 26 4.3完全發展流 28 4.4動脈瘤基本流場圖 29 4.4.1未加裝支架於動脈瘤流場 29 4.4.2加裝支架於動脈瘤流場 36 4.5流入動脈瘤內體積流量 45 4.5.1 穩態流場下流入動脈瘤內體積流量 45 4.5.2 脈動流場下流入動脈瘤內體積流量 46 4.6動脈瘤壁面剪應力 48 4.6.1未加裝支架之動脈瘤壁面剪應力 48 4.6.2加裝支架之動脈瘤壁面剪應力 50 第五章 結論與建議 53 5.1結論 53 5.2建議 54 參考文獻 55

    1.行政院衛生署:中華民國公共衛生概況。行政院衛生署,2009.
    2.Huang J, van Gelder JM. The Probability of Sudden Death From Rupture of Intracranial Aneurysms: a Meta-Analysis. Neurosurgery. 2002;51(5):1101–1107.
    3.Liou TM, Liou SN. A review on in vitro Studies of Hemodynamic Characteristics in Terminal and Lateral Aneurysm Models. Proc Natl Sci Counc Repub China B. 1999;23(4):133–148.
    4.Sfora DM, Putman CM, Cebral JR. Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech. 2009;41:91–107.
    5.Holdsworth DW, Norley CJ, Frayne R, Steinman DA, Rutt BK. Characterization of Common Carotid Artery Blood-Flow Waveforms in Normal Human Subjects. Physiol Meas. 1999;20(3):219–240.
    6.Wojciech Kasperaa, Piotr Ładzińskia, Jerzy Słowińskia, Marek Koperaa, Witold Tomalskic and Aleksandra Ślaska-Kasperad. Blood flow velocity in the arteries of the anterior cerebral artery complex in patients with an azygos anterior cerebral artery aneurysm: A transcranial color-coded sonography study. Clinical Neurology and Neurosurgery. 2009;111(1):63-68.
    7.Kohler U, Marshall I, Robertson MB, Long Q, Xu XY, Hoskins PR. MRI Measurement of Wall Shear Stress Vectors in Bifurcation Models and Comparison With CFD Predictions. J Magn Reson Imaging. 2001;14(5):563–573.
    8.Steinman DA, Thomas JB, Ladak HM, Milner JS, Rutt BK, Spence JD. Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness Using Computational Fluid Dynamics and MRI. Magn Reson Med. 2002;47(1):149–159.
    9.Ma B, Harbaugh RE, Raghavan ML. Three-Dimensional Geometrical Characterization of Cerebral Aneurysms. Ann Biomed Eng. 2004;32(2):264–273.
    10.Yu SC, Zhao JB. A Steady Flow Analysis on the Stented and Non-Stented Sidewall Aneurysm Models. Med Eng Phys. 1999;21(3):133–141.
    11.Imbesi SG, Kerber CW. Analysis of Slipstream Flow in a Wide-Necked Basilar Artery Aneurysm: Evaluation of Potential Treatment Regimens. AJNR Am J Neuroradiol. 2001;22(4):721–724.
    12.Lieber BB, Livescu V, Hopkins LN, Wakhloo AK. Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow. Ann Biomed Eng. 2002;30(6):768–777.
    13.Byun HS, Rhee K. Intraaneurysmal Flow Changes Affected by Clip Location and Occlusion Magnitude in a Lateral Aneurysm Model. Med Eng Phys. 2003;25(7):581–589.
    14.Liou TM, Liou SN, Chu KL. Intra-Aneurysmal Flow With Helix and Mesh Stent Placement Across Side-Wall Aneurysm Pore of a Straight Parent Vessel. ASME J Biomech Eng. 2004;126(1):36–43.
    15.Rhee K, Han MH, Cha SH. Changes of Flow Characteristics by Stenting in Aneurysm Models: Influence of Aneurysm Geometry and Stent Porosity. Ann Biomed Eng. 2002;30(7):894–904.
    16.Aenis M, Stancampiano AP, Wakhloo AK, Lieber BB. Modeling of flow in a straight stented and nonstented side wall aneurysm model. J. Biomech. Eng. 1997;119:206–212.
    17.Hoi Y, Woodward SH, Kim M, Taulbee DB, Meng H. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J Biomech Eng. 2006;128:844–851.
    18.Liou, TM; Yi-Chen, L; Juan, WC, Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. J Biomechanics.2007;40(6):1268-1275.
    19.Liou, TM; Yi-Chen, L; Juan, WC, Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. J Biomechanics.2007;40(6):1268-1275.
    20.Zhang, YS; Yang, XJ; Wang, SZ, et al., Hemodynamic effects of stenting on wide-necked intracranial aneurysms. CHINESE MEDICAL J.2010;123(15):1999-2003.
    21.陳建任,金屬材料在生醫產業的前瞻應用專題研究,金屬工業研究發展中心,高雄,第四章,2000.
    22.Ferguson, G.G., Physical factors in the initiation growth, and rupture of human intracranial saccular aneurysms, J. Neurosurg. 1972; 37:666-677.
    23.Sundt, T.M. and Whisnant, J.P., Sunarachnoid hemorrhage from intracranial aneurysms. Surgical management and natural history of disease, N. Engl. J., 1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE