研究生: |
林子晴 Tzu-Ching Lin |
---|---|
論文名稱: |
IEEE 802.11e無線網路上針對H.264多媒體串流之動態封包選擇性傳輸機制 A Dynamic Packet Selective Transmission Mechanism for H.264 Video Streaming over IEEE 802.11e WLANs |
指導教授: |
陳文村
Wen-Tsuen Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
中文關鍵詞: | 無線網路 、多媒體串流 、動態封包選擇性傳輸機制 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
隨著無線網路廣泛地使用以及多媒體應用需求的增加,例如:多媒體串流、視訊電話、高解析度電視(HDTV),對於在無線環境中支援多媒體傳輸更加被重視。由於無線頻道之衰減、多重路徑、干擾等特性,使得所提供的頻寬會遭遇瞬時劇烈波動的現象,無法維持一致,導致無可避免的傳輸服務品質(Quality of Service, QoS)下降。傳統改善無線環境中頻寬波動之傳輸品質的現有方法為熟知的適應性傳輸調變(link adaptation)及適應性改變資料傳輸速率機制(rate adaptation)。然而,這些方法沒有考慮到資料本身的屬性和編碼技術的特性,並且端賴實體層提供緩慢的反饋資訊來調整適當的傳輸速率。因此,對於即時性的多媒體應用,特別是有嚴謹頻寬需求和延遲限制的影音串流服務,無法提供較好的傳輸服務品質也無法及時地因應瞬時頻寬波動的情形。
在這篇論文中,我們在IEEE 802.11e無線網路環境中,提出了一個cross-layer的機制來改善瞬時頻寬波動情形下之H.264影音串流傳輸的服務品質。我們的方法藉由在應用層(application layer)根據對H.264的slices的特性做分類,使用錯誤頻道傳輸模型來預測頻道情況並且結合多重存取控制層(MAC layer)的封包選擇性傳輸機制來達成。
透過NS2模擬工具評估我們所提出的方法,相較於原本的802.11e EDCA,最重要封包的丟棄率和平均封包延遲皆大幅改善,証明所提出之方法於無線頻寬瞬時波動的情形下可提供較佳的H.264影音串流之傳輸的服務品質並有效率地使用珍貴的無線網路資源。
Abstract
With the increasing usage of wireless networks and the demand for multimedia
applications, such as video streaming, videophone, high definition television (HDTV) etc.,
it is very important to provide quality of service (QoS) for real-time applications over
Wireless Local Network (WLANs). To support QoS in WLAN, the 802.11 Working
Group has developed a new protocol, IEEE 802.11e, to provide service differentiation at
the medium access control (MAC) layer. Because of wireless channel characteristics,
such as shadowing, multi-path, fading, and interferences, the allocated bandwidth is
usually not fixed. It results in ineluctable degradation in QoS. Solutions to deal with
wireless bandwidth fluctuations consist of link adaptation (LA) and rate adaptation (RA).
However, these approaches rely on the slow feedback of physical layer to adapt
transmission rate and do not consider characteristics of traffic and codec. Thus, they may
not satisfy requirements of strict bandwidth guarantee and latency limitation for video
streaming. In this thesis, we propose a cross layer mechanism to improve H.264 video
streaming transmission over IEEE 802.11e wireless networks, when encountering
short-term bandwidth fluctuations. The proposed cross layer mechanism consists of slice
classification in the application layer, a dynamic packet selective transmission (DPST)
scheme in the MAC layer, and channel condition prediction using two-state Markov
chain. Performance of the proposed mechanism is evaluated through extensive
simulations. Results show that the proposed cross layer mechanism provides better video
quality and lower packet delay.
[1] IEEE 802.11 WG, IEEE 802.11e, ”IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements,” 2005.
[2] ITU-T Rec. H.264/ISO/IEC 14496-10 AVC, JVT-G050, Joint Video Team (JVT) ISO/IEC MPEG, ITU-T VCEG, “Final Draft, International Standard on Joint Video Specification,” 2003.
[3] J.P.Ebert, A.Willig, A Gilbert-Elliot Bit Error Model and the Efficient Use in Packet Level Simulation, Technical Repoert, TKN-99-002, Technical University of Berlin, March 1999.
[4] A. Grilo, M. Macedo, and M. Nunes, “A scheduling algorithm for QoS support in IEEE 802.11e networks,” IEEE Wireless Communications, June 2003.
[5] P. Ansel, Q. Ni, and T. Turletti, “An Efficient Scheduling Scheme for IEEE 802.11e,” Proc. Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2004.
[6] N. Ramos, D. Panigrahi, and S. Dey, “Dynamic Adaptation Policies to Improve Quality of Service of Multimedia Applications in WLAN Networks,” Proc. Int’l. Wksp. Broadband Wireless Multimedia, San Jose, CA, 2004.
[7] Siris, V.A., Courcoubetis, C., “Resource Control for the EDCA and HCCA Mechanisms in IEEE 802.11e Networks,” Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006.
[8] Y. Xiao, H. Li, and S. Choi, “Protection and Guarantee for Voice and Video Traffic in IEEE 802.11e Wireless LANs,” Proc. IEEE INFOCOM ’04, vol. 3, Hong Kong, Mar. 2004, pp. 2152–62.
[9] Gao, D., Cai, J., and Zhang, L., “Physical rate based admission control for HCCA in IEEE 802.11e WLANs,” Advanced Information Networking and Applications (AINA), vol.1, pp: 479- 483, March 2005.
[10] Naoum-Sawaya, J., Ghaddar, B., Khawam, S., Safa, H., Artail, H., and Dawy, Z., "Adaptive approach for QoS support in IEEE 802.11e wireless LAN," Wireless and Mobile Computing, Networking And Communications (WiMob), 2005.
[11] N. Ramos, D. Panigrahi, and S. Dey, “ChaPLeT: Channel-dependent Packet Level Tuning for Service Differentiation in IEEE 802.11e,” Proc. Int’l. Symp. Wireless Pers. Multimedia Commun., Yokoshuka, Japan, 2003.
[12] Kyoung-Ju Noh, Woo-Yong Choi, Sok-Kyu Lee, “Adaptive and dynamic tuning of the operation parameter value for QoS and fairness in wireless LAN,” IEEE Vehicular Technology Conference (VTC), 2004.
[13] L. Romdhani, Q. Ni, and T. Turletti., “Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad hoc networks,” in Proceedings of IEEE WCNC, Mar. 2003.
[14] Khan, S., Peng, Y., Steinbach, E., Sgroi, M., Kellerer, W., “Application-driven cross-layer optimization for video streaming over wireless networks,” IEEE Communications Magazine, Jan. 2006.
[15] Q. Liu, S. Zhou, and G. Giannakis, “Cross-layer Scheduling with Prescribed QoS Guarantees in Adaptive Wireless Networks,” IEEE JSAC, vol. 23, no. 5, May 2005, pp. 1056–66.
[16] R. S. Tupelly, J. Zhang, and E. K. P. Chong, “Opportunistic Scheduling for Streaming Video in Wireless Networks,” 37th Annual Conf. Info. Sci. and Sys., Baltimore, MD, Mar. 12–14, 2003.
[17] Y. Peng et al., “Adaptive Resource Allocation and Frame Scheduling for Wireless Multi-user Video Streaming,” IEEE Int’l. Conf. Image Proc., Genova, Italy, Sept. 11–14, 2005.
[18] Y. Shan and A. Zakhor, “Cross Layer Techniques for Adaptive Video Streaming over Wireless Networks,” IEEE Int’l. Conf. Multimedia and Expo, Lausanne, Switzerland, Aug. 26–29, 2002.
[19] M. van der Schaar et al., “Adaptive Cross-Layer Protection Strategies for Robust Scalable Video Transmission over 802.11 WLANs,” IEEE JSAC, vol. 21, no. 10, Dec. 2003, pp. 1752–63.
[20] M. van der Schaar and S. Shankar, “Cross-Layer Wireless Multimedia Transmission: Challenges, Principles, and New Paradigms,” IEEE Wireless Commun., vol. 12, no. 4, Aug. 2005, pp. 50–58.
[21] L.-U Choi, W. Kellerer, and E. Steinbach, “Cross-Layer Optimization for Wireless Multi-user Video Streaming,” IEEE Int’l. Conf. Image Proc., Singapore, Oct. 24–27, 2004.
[22] Haratcherev, I.; Taal, J.; Langendoen, K.; Lagendijk, R.; Sips, H. “Fast 802.11 link adaptation for real-time video streaming by cross-layer signaling”, IEEE International Symposium on Circuits and Systems (ISCAS), 2005.
[23] Haratcherev, L.; Taal, J.; Langendoen, K.; Lagendijk, R.; Sips, H., “Optimized video streaming over 802.11 by cross-layer signaling”, IEEE Communications Magazine, 2006.
[24] Iera, A., Molinaro, A.,Ruggeri, G., Tripodi, D., “Dynamic prioritization of multimedia flows for improving QoS and throughput in IEEE 802.11e WLANs,” IEEE International Conference on Communications (ICC), 2005
[25] Ksentini, A.; Gueroui, A.; Naimi, M., “Improving H.264 video transmission in 802.11e EDCA”, IEEE Computer Communications and Networks (ICCCN), 2005.
[26] H. S. Wang, P. Chang, “On verifying the first-order Markovian assumption for a Rayleigh fading channel model,” IEEE Transactions on Vehicular Technology, vol. 45, no. 2, pp. 353- 357, May 1996.
[27] M. T. Ivrlac, “Parameter selection for the Gilbert-Elliott model,” Technical Report TUM-LNS-TR-03-05, Institute for Circuit Theory and Signal Processing, Munich University of Technology, May 2003.
[28] ITU-T Rec. H.264/ISO/IEC 14496-10 AVC, JVT-G050, Joint Video Team (JVT) ISO/IEC MPEG, ITU-T VCEG, “Final Draft, International Standard on Joint Video Specification,” 2003.
[29] Ksentini, A., Naimi, M., Gueroui, A., “Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross-layer architecture,” IEEE Communications Magazine, Jan. 2006.
[30] http://www.apple.com/quicktime/technologies/h264/
[31] NS-2 simulator. http://www.isi.edu/nsnam/ns/
[32] EDCA module. http://www.tkn.tu-berlin.de/research/802.11e_ns2/
[33] myEvalvid network trace tool. http://140.116.72.80/~smallko/ns2/myEvalvidNT.htm
[34] Video traces for network performance evaluation. http://www.tkn.tu-berlin.de/research/trace/trace.html
[35] Cheng-Han Lin, Chih-Heng Ke, Ce-Kuen Shieh, and Chilamkurti, N.K., “The Packet Loss Effect on MPEG Video Transmission in Wireless Networks,” Advanced Information Networking and Applications (AINA), April 2006.