簡易檢索 / 詳目顯示

研究生: 張紹宣
Shao-Hsuan Chang
論文名稱: 自適應流體探針之設計與齲齒檢測之應用
A Self-Adaptive Fluidic Probe for Electrical Caries Detection
指導教授: 蘇育全
Yu-Chuan Su
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 84
中文關鍵詞: 齲齒探針流體
外文關鍵詞: caries, probe, fluidic
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展出以電阻抗法作為齲齒檢測機制,且能隨牙齒表面形貌改變形狀的流體探針。基於琺瑯質有著極高的阻抗值,當琺瑯質被齲蝕產生孔洞,阻抗值很小的唾液將代替琺瑯質填充至孔洞,利用此點可判斷出何處有齲齒的危機。流體探針之尖端液體可在親水性牙齒表面自發地延展,並且滲入齲齒孔隙中,與牙齒有著緊密的接觸,減小了接觸電阻的產生。探針尖端使用聚甲基丙烯酸甲酯為主要材料,以雷射雕刻製作出寬度約100um的液體流道。液體流道鍍有一層銀金屬,可同時作為引導電流的通道;表面覆有一層高分子薄膜,讓液體能從探針尖端流出,並藉以保護流道。管狀氣流則圍繞著流體探針,有著阻絕牙齒表面水膜的功能,讓電流能夠通過牙齒內部;同時藉由調整氣流壓力的大小,進而控制探針液體的延展面積。流體探針已成功判斷出健康與齲齒位置的不同,牙齒健康處的阻抗值約大於齲齒處阻抗值的30倍以上,是相當靈敏且可靠的齲齒檢測工具。流體探針同時能夠檢測隱藏在牙縫的齲齒,此項是其他齲齒檢測方式所難以達到的功能。期望未來此檢測系統能發展成熟,應用至一般家庭生活,成為齲齒診斷上的利器。


    This thesis presents a miniature fluidic probe that is capable of self-adapting its shape to teeth and detecting caries at its early stage by sensing the variation in electrical-impedance. The fluidic probe, whose liquid tip spontaneously spreads on hydrophilic tooth surfaces and into underneath caries, is employed to create intimate electrical contact for impedance sensing. A tubular air sleeve shaped by the probe casing is applied around the contact point to insulate it from surrounding saliva, and to regulate the spreading of the liquid tip. In the prototype demonstration, 23 un-restored, extracted premolar teeth were investigated and the results indicated >30 times impedance variations between sound and carious teeth, by which caries could be identified in a sensitive and reliable manner. Furthermore, the fluidic probe has been successfully applied to detect approximal caries, which hides between adjacent teeth and is hardly detected by any existing techniques. As such, the proposed self-adaptive fluidic probe could readily serve as a diagnostic tool, which is critical to caries prevention and home-care applications.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 咬翼X光圖 ( Bitewing radiography ) 2 1.2.2 雷射螢光法 ( Laser fluorescence ) 4 1.2.3 光纖透射法 ( Fiber optic trans-illumination, FOTI ) 5 1.2.4 超音波影像法 ( Ultrasound Imaging ) 7 1.2.5 電阻抗法 ( Electric resistance / impedance ) 8 1.2.6 各方式比較 10 1.3 研究目標 11 1.4 論文架構 12 第2章 理論基礎 13 2.1 牙齒 13 2.1.1 牙齒結構[2] 13 2.1.2 齲齒的形成過程 14 2.1.3 電阻抗法齲齒檢測機制 16 2.2 表面張力 16 2.2.1 定義 17 2.2.2 接觸角與親疏水性 17 2.2.3 Young-Laplace Equation 19 2.2.4 流體探針與牙齒接觸之分析 22 2.2.5 流體探針防漏機制 26 第3章 實驗系統發展 30 3.1 系統架構 30 3.2 實驗材料與方法 31 3.2.1 牙齒樣本的準備 31 3.2.2 流體探針組裝材料與加工方法 32 3.2.2.1 電腦數值控制加工( Computer Numerical Control, CNC ) 32 3.2.2.2 雷射雕刻加工 34 3.2.2.3 PDMS接合 36 3.2.2.4 網印製程 37 3.2.3 環型電極 37 3.2.4 牙刷型電極 39 3.2.5 第一代筆型流體探針 40 3.2.6 第二代筆型流體探針 43 3.2.6.1 牙縫齲齒測量的改進 46 3.3 實驗步驟與設置 49 3.3.1 流體探針檢測機制 49 3.3.2 牙縫齲齒的測量 50 3.3.2.1 第一代流體探針測量牙縫齲齒方式 51 3.3.2.2 第二代流體探針測量牙縫齲齒方式 52 第4章 實驗結果與討論 54 4.1 探針效能測試 54 4.1.1 不同位置效能測試 55 4.1.2 輔助氣流測試 56 4.1.3 流體與固體探針比較 60 4.2 牙縫齲齒的測量 62 4.2.1 第一代流體探針探測牙縫齲齒之結果 62 4.2.2 第二代流體探針探測牙縫齲齒之結果 63 4.3 問題與討論 66 4.3.1 溫度 66 4.3.2 牙齒中的離子濃度 67 4.3.3 流體探針與牙齒接觸分析之結果 68 4.3.4 外界氣流壓力對流出液體的影響 72 4.3.5 網印製程的問題 76 4.3.6 牙齒阻抗之等效電路 77 4.3.7 流體探針在臨床上應用之問題 78 第5章 未來發展方向與展望 80 5.1 理想系統架構 80 5.2 流體探針齲齒檢測流程 81 5.3 未來展望 82 5.4 結論 83 參考文獻 85

    [1]Thomas Klinke, et al, “Caries Detection at Discoloured Occlusal Sites: A Comparison of Four Methods within Two Age Groups,” Int Poster J Dent Oral Med 2006, Vol 8 No 01, Poster 309.
    [2]B. J. Orban著, 彭清迥, 鄭莉珮 譯, Orban’s Oral Histology and Embryology, 合記圖書出版社, 1987
    [3]http://www.tpsmedical.co.uk/
    [4]R. R. Alfano, S. S. Yao, “Human Teeth with and without Dental Caries Studied by Visible Luminescent Spectroscopy,” Journal of Dental Research 60 (2): 120-122 1981.
    [5]H. Bjeckhagen, F. Sundstrom, et al, “Early Detection of Enamel Caries by the Luminescence Excited by Visible Laser Light,” Swedish Dental Journal 6 (1): 1-7 1982.
    [6]E.D.J. Dejong , F. Sundstrom, et al, “A New Method for in vivo Quantification of Changes in Initial Enamel Caries with Laser Fluorescence” Caries Research 29 (1): 2-7, 1995.
    [7]M .Ando, A.F. Hall, et al, “Relative Ability of Laser Fluorescence Techniques to Quantitate Early Mineral Loss in vitro,” Caries Research 31 (2): 125-131, 1997.
    [8]A.G.F. Zandona, et al, “Laser Fluorescence Detection of Demineralization in Artificial Occlusal Fissures,” Caries Research 32 (1): 31-40, 1998.
    [9]M.D. Lagerweij, et al, “The Validity and Repeatability of Three Light-Induced Fluorescence Systems: An in vitro Study,” Caries Research 33 (3): 220-226, 1999.
    [10]Angel Sanchez-Figueras, “Laser Fluorescence Detection of Occlusal Caries,” Clinical Utilization of the Kavo Diagnodent.
    [11]F. Sundstrom, K. Fredriksson, et al, “Laser-Induced Fluorescence from Sound and Carious Tooth Substance - Spectroscopic Studies,” Swedish Dental Journal 9 (2): 71-80 1985.
    [12]J. Vaarkamp, et al, “Quantitative Diagnosis of Small Approximal Caries Lesions Utilizing Wavelength-Dependent Fiber-Optic Transillumination,” Journal of Dental Research 76 (4): 875-882 ,1997.
    [13]S. Keem, M. Elbaum, “Wavelet Representations for Monitoring Changes in Teeth Imaged with Digital Imaging Fiber-Optic Transillumination,” IEEE Transactions on Medical Imaging 16 (5): 653-663, 1997.
    [14]M. Culjat, et al, “Imaging of Human Tooth Enamel Using Ultrasound,” IEEE Transactions on Medical Imaging 22 (4): 526-529, 2003.
    [15]P. Pincus, “A New Method of Examination of Molar Teeth Grooves for the Presence of Dental Caries,” Journal of Physiology, 1951.
    [16]H. Nomura, et al, “Some Observations on Electric Conductivity of the Tooth,” Bull Tokyo Dent Coll 12:15-23.
    [17]M.-C.D.N.J.M. Huysmans, et al, “Impedance Spectroscopy of Teeth with and without Approximal Caries Lesions - An in vitro Study,” Journal of Dental Research 75 (11): 1871-1878, 1996.
    [18]C. Longbottom, M.-C.D.N.J.M. Huysmans, et al, “Detection of Dental Decay and Its Extent Using Ac Impedance Spectroscopy,” Nature Medicine 2 (2): 235-237, 1996.
    [19]M.-C.D.N.J.M. Huysmans, et al, “Electrical Conductance and Electrode Area on Sound Smooth Enamel in Extracted Teeth,” Caries Research 29 (2): 88-93, 1995.
    [20]W. Adamson, “Physical Chemistry of Surfaces,” 6th ed, 1997.
    [21]M.-C.D.N.J.M. Huysmans, et al, “Temperature Dependence of the Electrical Resistance of Sound and Carious Teeth.” Journal of Dental Research 79 (7): 1464-1468, 2000.
    [22]M.-C.D.N.J.M. Huysmans, et al, “Electrical Conductance and Electrode Area on Sound Smooth Enamel in Extracted Teeth,” Caries Research 29:88-93.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE