簡易檢索 / 詳目顯示

研究生: 許鏡瑋
Shiu, Jing-Wei
論文名稱: 用於直接數據域與非均質檢測之低複雜度混合架構時空雙域自適應濾波雷達
Low-Complexity Hybrid Space-Time Adaptive Filtering Architecture Radar With Direct Data Domain and Nonhomogeneous Detection
指導教授: 吳仁銘
Wu, Jen-Ming
口試委員: 張力
Zhang, Li
謝旻秀
Hsieh, Min-Shiu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 147
中文關鍵詞: 時空雙域自適應處理空對地低速目標檢測直接數據域非均質檢測相控陣列雷達自適應濾波
外文關鍵詞: Space-Time Adaptive Processing, Ground Moving Target Identify, Direct Data Domain, NonHomogeneous Detection, AESA, Adaptive Filter
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相控陣列雷達為各國積極投入所發展之機載偵蒐雷達關鍵技術,機
    載雷達之重要功能包含對地低速目標檢測(GroundMovingTarget Indica
    tion,GMTI)。本次研究將機載雷達之GMTI為主軸,開發異質環境下時空雙
    域自適應濾波(Space-Time Adaptive Processing,STAP) 演算法,用於次陣列
    多通道數位化空用雷達之GMTI任務。
    本研究提出利用非均勻檢測器與直接數據域之混合架構降維度STAP演
    算法,基於降維度STAP下,藉由直接數據域(DirectDataDomain,D3)構成
    降維度矩陣,能針對測試資料集進行離散干擾壓制,並透過非均勻檢測器
    (Non-Homogeneous Detector,NHD) 對訓練資料集進行篩選,有效避免訓練
    資料集當中之非均勻成分對雜波統計特性矩陣造成影響,有效並避免目標
    自抑效應(Targetself-nulling),與離散干擾(Discrete interference) 所造成的誤
    警。本研究透過MATLAB產生雷達基頻訊號,構建雷達資料集,並於雷達
    資料集當中添加離散干擾與目標特性相似訊號,分析不同STAP演算法架
    構下,非均勻資料集所造成損害,並藉由本研究提出之新架構有效解決測
    試資料集離散干擾與訓練資料集導致目標自抑之非理想效應


    Phased-array radar has emerged as a key airborne surveillance radar technol
    ogy, actively developed by nations worldwide. Among the critical functions of
    airborne radar systems is the detection of low-velocity ground targets, or Ground
    MovingTargetIndication(GMTI).ThisstudyfocusesonGMTIapplicationsofair
    borne radar, developing a Space-Time Adaptive Processing (STAP) algorithm de
    signed for non homogeneous environments to support GMTI tasks in sub-arrayed,
    multi-channel digital airborne radar. In this research, a hybrid reduced dimension
    STAP algorithm, combining a Non-Homogeneous Detector (NHD) with a Direct
    Data Domain (D3) approach, is proposed. Within this framework, the dimension
    reduction matrix is constructed directly from the data domain, enablingsuppression
    of discrete interference in the test dataset. Concurrently, the Non-Homogeneous
    Detector filters the training dataset to prevent non-homogeneous components from
    affecting the clutter covariance matrix.
    MATLABisutilizedtogeneratebasebandradarsignals,constructaradardataset,
    and inject discrete interference and multiple targets to simulate realistic scenarios.
    The performance of different STAP algorithm architectures is then analyzed to as
    sess the impact of non-homogeneous datasets. The proposed algorithm demon
    strates an effective solution for addressing discrete interference in the test data and
    eliminating non-ideal effects in the training data.

    誌謝 摘要i Abstract ii 1研究動機、目標與貢獻1 1.1研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2研究目標. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3研究主要貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2雷達訊號處理基礎3 2.1波的性質. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2建設性干涉與破壞性干涉. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3雷達頻段. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4雷達系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.5訊號雜訊比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.6 CoherentIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.7雷達距離測量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.8雷達距離公式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3雷達資料方塊與其訊號處理12 3.1雷達資料方塊的來源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2雷達資料方塊介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3雷達資料方塊之訊號處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4快照向量化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5操作向量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6波束合成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.6.1理想波束合成之原理. . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.6.2波束合成對SNR之變化. . . . . . . . . . . . . . . . . . . . . . . . 25 3.6.3波束合成與都卜勒處理之關係. . . . . . . . . . . . . . . . . . . . . 28 3.7都卜勒處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.7.1都卜勒效應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.7.2都卜勒效應之數學推導. . . . . . . . . . . . . . . . . . . . . . . . . 30 3.7.3都卜勒處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.7.4內積形式的離散傅立葉轉換與時間域操作向量之關係. . . . . . . 38 3.7.5都卜勒處理對SNR之影響. . . . . . . . . . . . . . . . . . . . . . . 40 3.7.6最小可偵測速度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.7.7都卜勒頻率混淆與處理方式. . . . . . . . . . . . . . . . . . . . . . 42 iii 3.7.8距離混淆與處理方式. . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 STAP基礎原理47 4.1 STAP基礎原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 STAP訊號處理流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 STAP權重訓練策略. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 STAP之數學推導. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 STAP權重當中的歸一化常數k探討. . . . . . . . . . . . . . . . . . . . . . 53 4.6 AdaptiveMatchFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.7 STAP對於SINR與SINRLoss之影響. . . . . . . . . . . . . . . . . . . . . 55 4.8 STAP權重計算所需要之訓練資料數探討. . . . . . . . . . . . . . . . . . . 56 4.9全維度下STAP執行難點. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.10硬體友善架構之捨棄克羅拉克內積. . . . . . . . . . . . . . . . . . . . . . 58 5距離-角度-速度響應圖與訊雜比損失60 5.1權重,操作向量與快照對應響應圖之關係. . . . . . . . . . . . . . . . . . 60 5.2雷達方塊的距離速度響應圖. . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3快照的角度速度響應圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4權重的角度速度響應圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.5權重施加於雷達資料集的速度響應圖. . . . . . . . . . . . . . . . . . . . . 66 5.6 SINRLoss作圖原理與做法. . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6降維度STAP訊號處理72 6.1降低維度STAP之數學原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2資料獨立之降維度STAP探討. . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3空間降維度矩陣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.4時間降維度矩陣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.5 ElementSpacePre-DopplerSTAP . . . . . . . . . . . . . . . . . . . . . . . . 78 6.5.1 Elementspacepre-DopplerSTAP原理. . . . . . . . . . . . . . . . . 78 6.5.2 Elementspacepre-DopplerSTAP示範. . . . . . . . . . . . . . . . . 83 6.6 ElementSpacePost-DopplerSTAP. . . . . . . . . . . . . . . . . . . . . . . . 84 6.6.1 Elementspacepost-DopplerSTAP數學原理. . . . . . . . . . . . . . 84 6.6.2 ElementSpacePost-DopplerSTAP示範. . . . . . . . . . . . . . . . 90 6.7 BeamSpacePre-DopplerSTAP . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.7.1 Beamspacepre-DopplerSTAP數學原理. . . . . . . . . . . . . . . . 90 6.7.2 Beamspacepre-DopplerSTAP示範. . . . . . . . . . . . . . . . . . 95 6.8 BeamSpacePost-DopplerSTAP . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.8.1 Beamspacepost-DopplerSTAP數學原理. . . . . . . . . . . . . . . 95 6.8.2 Beamspacepost-DopplerSTAP示範. . . . . . . . . . . . . . . . . . 102 7非均勻雷達資料集與離散干擾及其對應處理方式103 7.1非均勻雷達資料集:NonHomogeneousandRadarDatacube . . . . . . . . . . 103 7.2非均勻檢測器(NonHomogeneousDetector)之原理與做法. . . . . . . . . . 105 7.3直接數據域(Two-dimensionaldirectdatadomainalgorithm)之原理與做法. 107 7.4 Tradeoffbetweenmainbeamgainandinterferencesuppression. . . . . . . . . 111 7.5 NonHomogeneousandSINRLoss . . . . . . . . . . . . . . . . . . . . . . . . 115 7.6 twostagehybridSTAPalgorithmwithNHD的原理與做法. . . . . . . . . . 116 7.7混合架構下的SINRLoss與距離速度響應圖的關係. . . . . . . . . . . . . 123 iv 8模擬結果125 8.1雷達、目標及環境模擬參數表. . . . . . . . . . . . . . . . . . . . . . . . . 125 8.2雷達與訊號處理模擬結果:均勻環境. . . . . . . . . . . . . . . . . . . . . . 129 8.3雷達與訊號處理模擬結果:非均勻環境. . . . . . . . . . . . . . . . . . . . 133 9結論143 References 144

    [1] L. Brennan, D. Piwinski, and F. Staudaher, “Space-time adaptive processing algorithm
    performance evaluation,” in Proceedings of the IEEE Long Island Section Adaptive An
    tenna Systems Symposium, pp. 105–110, 1992.
    [2] R. Klemm, “Introduction to space-time adaptive processing,” in IEE Colloquium on
    Space-Time Adaptive Processing (Ref. No. 1998/241), pp. 1/1–111, 1998.
    [3] J. R. Guerci, “Space-time adaptive processing for radar,” 2003.
    [4] R. Klemm, “Principles of space-time adaptive processing (3rd edition),” 2006.
    [5] W. Melvin, “A stap overview,” IEEE Aerospace and Electronic Systems Magazine,
    vol. 19, no. 1, pp. 19–35, 2004.
    [6] J. McMahon and K. Teitelbaum, “Space-time adaptive processing on the mesh syn
    chronous processor,” in Proceedings of International Conference on Parallel Processing,
    pp. 734–740, 1996.
    [7] W. Buerger, “Space-time adaptive processing: Fundamentals,” 2004.
    [8] R. Adve, T. Hale, and M. Wicks, “Practical joint domain localised adaptive processing
    in homogeneous and nonhomogeneous environments. i. homogeneous environments,”
    Radar, Sonar and Navigation, IEE Proceedings-, vol. 147, pp. 57– 65, 05 2000.
    [9] R. Adve, T. Hale, and M. Wicks, “Practical joint domain localised adaptive processing
    in homogeneous and nonhomogeneous environments. part 2: Nonhomogeneous environ
    ments,” Radar, Sonar and Navigation, IEE Proceedings-, vol. 147, pp. 66– 74, 05 2000.
    [10] I. Reed, J. Mallett, and L. Brennan, “Rapid convergence rate in adaptive arrays,” IEEE
    Transactions on Aerospace and Electronic Systems, vol. AES-10, no. 6, pp. 853–863,
    1974.
    [11] B.Carlson, “Covariancematrixestimationerrorsanddiagonalloadinginadaptivearrays,”
    IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 4, pp. 397–401,
    1988.
    [12] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P. Larzabal, “Covariance structure
    maximum-likelihood estimates in compound gaussian noise: Existence and algorithm
    analysis,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 34–48, 2008.
    [13] L. Cai and H. Wang, “A persymmetric multiband glr algorithm,” IEEE Transactions on
    Aerospace and Electronic Systems, vol. 28, no. 3, pp. 806–816, 1992
    [14] G. Pailloux, F. Pascal, J.-P. Ovarlez, and P. Forster, “Comparison of various detection
    schemes for stap radar based on experimental data,” 10 2009.
    [15] L. Scharf and L. McWhorter, “Adaptive matched subspace detectors and adaptive coher
    ence estimators,” in Conference Record of The Thirtieth Asilomar Conference on Signals,
    Systems and Computers, pp. 1114–1117 vol.2, 1996.
    [16] E. Conte, M. Lops, and G. Ricci, “Adaptive detection schemes in compound-gaussian
    clutter,” IEEETransactionsonAerospaceandElectronicSystems, vol.34, no.4, pp.1058
    1069, 1998.
    [17] G.Pailloux, P. Forster, J. P. Ovarlez, and F. Pascal, “On persymmetric covariance matrices
    in adaptive detection,” in 2008 IEEE International Conference on Acoustics, Speech and
    Signal Processing, pp. 2305–2308, 2008.
    [18] F.GiniandM.Greco,“Covariancematrixestimationforcfardetection in correlated heavy
    tailed clutter,” Signal Processing, vol. 82, no. 12, pp. 1847–1859, 2002.
    [19] J. Ward, “Space-time adaptive processing for airborne radar,” in 1995 International Con
    ference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2809–2812 vol.5, 1995.
    [20] F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A cfar adaptive matched filter detec
    tor,” IEEETransactions on AerospaceandElectronicSystems, vol.28, no.1, pp.208–216,
    1992.
    [21] Y.-L. Wang, J.-W. Chen, Z. Bao, and Y.-N. Peng, “Robust space-time adaptive process
    ing for airborne radar in nonhomogeneous clutter environments,” IEEE Transactions on
    Aerospace and Electronic Systems, vol. 39, no. 1, pp. 70–81, 2003.
    [22] A. Farina and L. Timmoneri, “Real-time stap techniques,” in IEE Colloquium on Space
    Time Adaptive Processing (Ref. No. 1998/241), pp. 3/1–3/7, 1998.
    [23] W.MelvinandM.Wicks,“Improvingpracticalspace-timeadaptiveradar,” inProceedings
    of the 1997 IEEE National Radar Conference, pp. 48–53, 1997.
    [24] S. bin, L. Shaohong, R. Yi, and L. Jingsheng, “Realization and comparison of qrd algo
    rithms for stap,” 10 2009.
    [25] J. Meyer-Hilberg, B. Bickert, and K.-P. Schmitt, “Results of flight tests of a two-channel
    radar system with real-time mti processing,” in RADAR 2002, pp. 275–279, 2002.
    [26] G. Schrader, “The knowledge aided sensor signal processing and expert reasoning
    (kassper) real-time signal processing architecture [radar signal processing],” in Proceed
    ings of the 2004 IEEERadarConference(IEEECat.No.04CH37509), pp.394–397, 2004.
    [27] J.Billingsley, A. Farina, F. Gini, M.Greco, andL.Verrazzani, “Statistical analyses of mea
    sured radar groundclutter data,” IEEETransactions onAerospaceandElectronicSystems,
    vol. 35, no. 2, pp. 579–593, 1999.
    [28] W. Melvin and G. Showman, “An approach to knowledge-aided covariance estimation,”
    IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 3, pp. 1021–1042,
    2006.
    [29] W. Buerger and I. Perna, “Knowledge aided stap/gmti with subarrayed aesa radar,” in
    Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar,
    pp. 1–6, 2016.
    [30] X. Zhu, J. Li, and P. Stoica, “Knowledge-aided space-time adaptive processing,” IEEE
    Transactions on Aerospace and Electronic Systems, vol. 47, no. 2, pp. 1325–1336, 2011.
    [31] W. Melvin, “Space-time adaptive radar performance in heterogeneous clutter,” IEEE
    Transactions on Aerospace and Electronic Systems, vol. 36, no. 2, pp. 621–633, 2000.
    [32] W.Xiaoqin and H. Chongzhao, “Direct data domain approach to space-time adaptive pro
    cessing,” Journal of Systems Engineering and Electronics, vol. 17, no. 1, pp. 59–64, 2006.
    [33] L. Dai, R. Li, and Y. Wang, “A modified direct data domain least squares approach using
    a single snapshot,” in 2008 Congress on Image and Signal Processing, vol. 1, pp. 37–40,
    2008.
    [34] Z. Jun, Z. Zhaoda, Z. Tao, and X. Hang, “A modified direct data domain method in
    spacetime adaptive processing,” in 2008 IEEE Conference on Robotics, Automation and
    Mechatronics, pp. 1154–1157, 2008.
    [35] C. Hui, H. Benxionq, W. Yongliang, and H. Yaoqionq, “Direction-of-arrival estimation
    based on direct data domain (d3) method,” Journal of Systems Engineering and Electron
    ics, vol. 20, no. 3, pp. 512–518, 2009.
    [36] J. He, D.-z. Feng, and X.-j. Yang, “A modified direct data domain stap approach based
    on cost function reconstruction,” in 2017 IEEE International Conference on Signal and
    Image Processing Applications (ICSIPA), pp. 455–458, 2017.
    [37] Z. Gao and H. Tao, “Knowledge-aided direct data domain stap algorithm for forward
    looking airborne radar,” in 2019 IEEE International Conference on Signal, Information
    and Data Processing (ICSIDP), pp. 1–6, 2019.
    [38] C. T. Capraro, G. T. Capraro, A. De Maio, A. Farina, and M. Wicks, “Demonstration
    of knowledge aided stap using measured airborne data,” in 2006 International Waveform
    Diversity Design Conference, pp. 1–6, 2006.
    [39] P. Antonik, H. Schuman, P. Li, W. Melvin, and M. Wicks, “Knowledge-based space
    time adaptive processing,” in Proceedings of the 1997 IEEE National Radar Conference,
    pp. 372–377, 1997.
    [40] C. Capraro, G. Capraro, D. Weiner, M. Wicks, and W. Baldygo, “Improved stap perfor
    mance using knowledge-aided secondary data selection,” pp. 361– 365, 05 2004.
    [41] W. Melvin, G. Showman, and J. Guerci, “A knowledge-aided gmti detection architecture
    [radar signal processing],” in Proceedings of the 2004 IEEE Radar Conference (IEEE Cat.
    No.04CH37509), pp. 301–306, 2004.
    [42] A.K.Shackelford, K.Gerlach, andS.D.Blunt, “Partially adaptive stap using the fracta al
    gorithm,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 1, pp. 58
    69, 2009.
    [43] S. D. Blunt, K. Gerlach, and M. Rangaswamy, “Stap using knowledge-aided covariance
    estimation and the fracta algorithm,” IEEE Transactions on Aerospace and Electronic Sys
    tems, vol. 42, no. 3, pp. 1043–1057, 2006.
    [44] S. Blunt, K. Gerlach, and M. Rangaswamy, “The enhanced fracta algorithm with
    knowledge-aided covariance estimation,” in Processing Workshop Proceedings, 2004
    Sensor Array and Multichannel Signal, pp. 638–642, 2004.
    [45] W. L. Melvin and G. A. Showman, “Performance results for a knowledge-aided clutter
    mitigation architecture,” in 2007 IET International Conference on Radar Systems, pp. 1
    5, 2007

    QR CODE