研究生: |
許鏡瑋 Shiu, Jing-Wei |
---|---|
論文名稱: |
用於直接數據域與非均質檢測之低複雜度混合架構時空雙域自適應濾波雷達 Low-Complexity Hybrid Space-Time Adaptive Filtering Architecture Radar With Direct Data Domain and Nonhomogeneous Detection |
指導教授: |
吳仁銘
Wu, Jen-Ming |
口試委員: |
張力
Zhang, Li 謝旻秀 Hsieh, Min-Shiu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 147 |
中文關鍵詞: | 時空雙域自適應處理 、空對地低速目標檢測 、直接數據域 、非均質檢測 、相控陣列雷達 、自適應濾波 |
外文關鍵詞: | Space-Time Adaptive Processing, Ground Moving Target Identify, Direct Data Domain, NonHomogeneous Detection, AESA, Adaptive Filter |
相關次數: | 點閱:33 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相控陣列雷達為各國積極投入所發展之機載偵蒐雷達關鍵技術,機
載雷達之重要功能包含對地低速目標檢測(GroundMovingTarget Indica
tion,GMTI)。本次研究將機載雷達之GMTI為主軸,開發異質環境下時空雙
域自適應濾波(Space-Time Adaptive Processing,STAP) 演算法,用於次陣列
多通道數位化空用雷達之GMTI任務。
本研究提出利用非均勻檢測器與直接數據域之混合架構降維度STAP演
算法,基於降維度STAP下,藉由直接數據域(DirectDataDomain,D3)構成
降維度矩陣,能針對測試資料集進行離散干擾壓制,並透過非均勻檢測器
(Non-Homogeneous Detector,NHD) 對訓練資料集進行篩選,有效避免訓練
資料集當中之非均勻成分對雜波統計特性矩陣造成影響,有效並避免目標
自抑效應(Targetself-nulling),與離散干擾(Discrete interference) 所造成的誤
警。本研究透過MATLAB產生雷達基頻訊號,構建雷達資料集,並於雷達
資料集當中添加離散干擾與目標特性相似訊號,分析不同STAP演算法架
構下,非均勻資料集所造成損害,並藉由本研究提出之新架構有效解決測
試資料集離散干擾與訓練資料集導致目標自抑之非理想效應
Phased-array radar has emerged as a key airborne surveillance radar technol
ogy, actively developed by nations worldwide. Among the critical functions of
airborne radar systems is the detection of low-velocity ground targets, or Ground
MovingTargetIndication(GMTI).ThisstudyfocusesonGMTIapplicationsofair
borne radar, developing a Space-Time Adaptive Processing (STAP) algorithm de
signed for non homogeneous environments to support GMTI tasks in sub-arrayed,
multi-channel digital airborne radar. In this research, a hybrid reduced dimension
STAP algorithm, combining a Non-Homogeneous Detector (NHD) with a Direct
Data Domain (D3) approach, is proposed. Within this framework, the dimension
reduction matrix is constructed directly from the data domain, enablingsuppression
of discrete interference in the test dataset. Concurrently, the Non-Homogeneous
Detector filters the training dataset to prevent non-homogeneous components from
affecting the clutter covariance matrix.
MATLABisutilizedtogeneratebasebandradarsignals,constructaradardataset,
and inject discrete interference and multiple targets to simulate realistic scenarios.
The performance of different STAP algorithm architectures is then analyzed to as
sess the impact of non-homogeneous datasets. The proposed algorithm demon
strates an effective solution for addressing discrete interference in the test data and
eliminating non-ideal effects in the training data.
[1] L. Brennan, D. Piwinski, and F. Staudaher, “Space-time adaptive processing algorithm
performance evaluation,” in Proceedings of the IEEE Long Island Section Adaptive An
tenna Systems Symposium, pp. 105–110, 1992.
[2] R. Klemm, “Introduction to space-time adaptive processing,” in IEE Colloquium on
Space-Time Adaptive Processing (Ref. No. 1998/241), pp. 1/1–111, 1998.
[3] J. R. Guerci, “Space-time adaptive processing for radar,” 2003.
[4] R. Klemm, “Principles of space-time adaptive processing (3rd edition),” 2006.
[5] W. Melvin, “A stap overview,” IEEE Aerospace and Electronic Systems Magazine,
vol. 19, no. 1, pp. 19–35, 2004.
[6] J. McMahon and K. Teitelbaum, “Space-time adaptive processing on the mesh syn
chronous processor,” in Proceedings of International Conference on Parallel Processing,
pp. 734–740, 1996.
[7] W. Buerger, “Space-time adaptive processing: Fundamentals,” 2004.
[8] R. Adve, T. Hale, and M. Wicks, “Practical joint domain localised adaptive processing
in homogeneous and nonhomogeneous environments. i. homogeneous environments,”
Radar, Sonar and Navigation, IEE Proceedings-, vol. 147, pp. 57– 65, 05 2000.
[9] R. Adve, T. Hale, and M. Wicks, “Practical joint domain localised adaptive processing
in homogeneous and nonhomogeneous environments. part 2: Nonhomogeneous environ
ments,” Radar, Sonar and Navigation, IEE Proceedings-, vol. 147, pp. 66– 74, 05 2000.
[10] I. Reed, J. Mallett, and L. Brennan, “Rapid convergence rate in adaptive arrays,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-10, no. 6, pp. 853–863,
1974.
[11] B.Carlson, “Covariancematrixestimationerrorsanddiagonalloadinginadaptivearrays,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 4, pp. 397–401,
1988.
[12] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P. Larzabal, “Covariance structure
maximum-likelihood estimates in compound gaussian noise: Existence and algorithm
analysis,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 34–48, 2008.
[13] L. Cai and H. Wang, “A persymmetric multiband glr algorithm,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 28, no. 3, pp. 806–816, 1992
[14] G. Pailloux, F. Pascal, J.-P. Ovarlez, and P. Forster, “Comparison of various detection
schemes for stap radar based on experimental data,” 10 2009.
[15] L. Scharf and L. McWhorter, “Adaptive matched subspace detectors and adaptive coher
ence estimators,” in Conference Record of The Thirtieth Asilomar Conference on Signals,
Systems and Computers, pp. 1114–1117 vol.2, 1996.
[16] E. Conte, M. Lops, and G. Ricci, “Adaptive detection schemes in compound-gaussian
clutter,” IEEETransactionsonAerospaceandElectronicSystems, vol.34, no.4, pp.1058
1069, 1998.
[17] G.Pailloux, P. Forster, J. P. Ovarlez, and F. Pascal, “On persymmetric covariance matrices
in adaptive detection,” in 2008 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 2305–2308, 2008.
[18] F.GiniandM.Greco,“Covariancematrixestimationforcfardetection in correlated heavy
tailed clutter,” Signal Processing, vol. 82, no. 12, pp. 1847–1859, 2002.
[19] J. Ward, “Space-time adaptive processing for airborne radar,” in 1995 International Con
ference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2809–2812 vol.5, 1995.
[20] F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A cfar adaptive matched filter detec
tor,” IEEETransactions on AerospaceandElectronicSystems, vol.28, no.1, pp.208–216,
1992.
[21] Y.-L. Wang, J.-W. Chen, Z. Bao, and Y.-N. Peng, “Robust space-time adaptive process
ing for airborne radar in nonhomogeneous clutter environments,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 39, no. 1, pp. 70–81, 2003.
[22] A. Farina and L. Timmoneri, “Real-time stap techniques,” in IEE Colloquium on Space
Time Adaptive Processing (Ref. No. 1998/241), pp. 3/1–3/7, 1998.
[23] W.MelvinandM.Wicks,“Improvingpracticalspace-timeadaptiveradar,” inProceedings
of the 1997 IEEE National Radar Conference, pp. 48–53, 1997.
[24] S. bin, L. Shaohong, R. Yi, and L. Jingsheng, “Realization and comparison of qrd algo
rithms for stap,” 10 2009.
[25] J. Meyer-Hilberg, B. Bickert, and K.-P. Schmitt, “Results of flight tests of a two-channel
radar system with real-time mti processing,” in RADAR 2002, pp. 275–279, 2002.
[26] G. Schrader, “The knowledge aided sensor signal processing and expert reasoning
(kassper) real-time signal processing architecture [radar signal processing],” in Proceed
ings of the 2004 IEEERadarConference(IEEECat.No.04CH37509), pp.394–397, 2004.
[27] J.Billingsley, A. Farina, F. Gini, M.Greco, andL.Verrazzani, “Statistical analyses of mea
sured radar groundclutter data,” IEEETransactions onAerospaceandElectronicSystems,
vol. 35, no. 2, pp. 579–593, 1999.
[28] W. Melvin and G. Showman, “An approach to knowledge-aided covariance estimation,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 3, pp. 1021–1042,
2006.
[29] W. Buerger and I. Perna, “Knowledge aided stap/gmti with subarrayed aesa radar,” in
Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar,
pp. 1–6, 2016.
[30] X. Zhu, J. Li, and P. Stoica, “Knowledge-aided space-time adaptive processing,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 47, no. 2, pp. 1325–1336, 2011.
[31] W. Melvin, “Space-time adaptive radar performance in heterogeneous clutter,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 36, no. 2, pp. 621–633, 2000.
[32] W.Xiaoqin and H. Chongzhao, “Direct data domain approach to space-time adaptive pro
cessing,” Journal of Systems Engineering and Electronics, vol. 17, no. 1, pp. 59–64, 2006.
[33] L. Dai, R. Li, and Y. Wang, “A modified direct data domain least squares approach using
a single snapshot,” in 2008 Congress on Image and Signal Processing, vol. 1, pp. 37–40,
2008.
[34] Z. Jun, Z. Zhaoda, Z. Tao, and X. Hang, “A modified direct data domain method in
spacetime adaptive processing,” in 2008 IEEE Conference on Robotics, Automation and
Mechatronics, pp. 1154–1157, 2008.
[35] C. Hui, H. Benxionq, W. Yongliang, and H. Yaoqionq, “Direction-of-arrival estimation
based on direct data domain (d3) method,” Journal of Systems Engineering and Electron
ics, vol. 20, no. 3, pp. 512–518, 2009.
[36] J. He, D.-z. Feng, and X.-j. Yang, “A modified direct data domain stap approach based
on cost function reconstruction,” in 2017 IEEE International Conference on Signal and
Image Processing Applications (ICSIPA), pp. 455–458, 2017.
[37] Z. Gao and H. Tao, “Knowledge-aided direct data domain stap algorithm for forward
looking airborne radar,” in 2019 IEEE International Conference on Signal, Information
and Data Processing (ICSIDP), pp. 1–6, 2019.
[38] C. T. Capraro, G. T. Capraro, A. De Maio, A. Farina, and M. Wicks, “Demonstration
of knowledge aided stap using measured airborne data,” in 2006 International Waveform
Diversity Design Conference, pp. 1–6, 2006.
[39] P. Antonik, H. Schuman, P. Li, W. Melvin, and M. Wicks, “Knowledge-based space
time adaptive processing,” in Proceedings of the 1997 IEEE National Radar Conference,
pp. 372–377, 1997.
[40] C. Capraro, G. Capraro, D. Weiner, M. Wicks, and W. Baldygo, “Improved stap perfor
mance using knowledge-aided secondary data selection,” pp. 361– 365, 05 2004.
[41] W. Melvin, G. Showman, and J. Guerci, “A knowledge-aided gmti detection architecture
[radar signal processing],” in Proceedings of the 2004 IEEE Radar Conference (IEEE Cat.
No.04CH37509), pp. 301–306, 2004.
[42] A.K.Shackelford, K.Gerlach, andS.D.Blunt, “Partially adaptive stap using the fracta al
gorithm,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 1, pp. 58
69, 2009.
[43] S. D. Blunt, K. Gerlach, and M. Rangaswamy, “Stap using knowledge-aided covariance
estimation and the fracta algorithm,” IEEE Transactions on Aerospace and Electronic Sys
tems, vol. 42, no. 3, pp. 1043–1057, 2006.
[44] S. Blunt, K. Gerlach, and M. Rangaswamy, “The enhanced fracta algorithm with
knowledge-aided covariance estimation,” in Processing Workshop Proceedings, 2004
Sensor Array and Multichannel Signal, pp. 638–642, 2004.
[45] W. L. Melvin and G. A. Showman, “Performance results for a knowledge-aided clutter
mitigation architecture,” in 2007 IET International Conference on Radar Systems, pp. 1
5, 2007