研究生: |
許嘉恩 Hsu, Chia-En. |
---|---|
論文名稱: |
分子架構對Poly(3-hexyl thiophene)-Poly(ε-caprolactone)嵌段共聚物自組裝行為的影響研究 Molecular Architecture Effect on the Self-assembly of Poly(3-hexyl thiophene)-Poly(ε-caprolactone) Block Copolymer |
指導教授: |
陳信龍
Chen, Hsin-Lung. |
口試委員: |
蘇群仁
Su, Chun-Jen. 賴偉淇 Lai, Wei-Chi. |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 嵌段共聚物 、自組裝結構 、微相分離 |
外文關鍵詞: | P3HT-b-PCL, microphase separation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於嵌段共聚物(block copolymers)自組裝行為所產生的微結構在奈米科技上多樣的應用潛力,因此其相關的研究受到相當大的重視,在各式各樣的嵌段共聚物系統中,剛-柔嵌段共聚物(rod-coil block copolymer)的項行為以及微結構都較柔-柔嵌段共聚物(coil-coil block copolymer)複雜多變,一般而言,聚合度、體積分率(組成)以及組成的聚合物種類都是會影響嵌段共聚物自組裝結構的的基本參數,除此之外,分子架構對其自組裝行為也會有所影響,本實驗系統性地研究以聚(3-己基噻吩)為剛段,聚己內酯為柔段組成,且擁有不同分子架構之嵌段共聚物(P3HT-b-PCL),透過小角度X光散射(SAXS)、廣角度X光散射(WAXS)以及示差掃描量熱儀(DSC)等儀器,我們探討不同分子架構對嵌段共聚物的自組裝行為、微相分離現象,以及結晶動力學的影響。
Self-assembly of block copolymers (bcps) has attracted considerable attention due to their versatile applications for nanotechnology. Among the wide variety of bcp systems, the rod-coil bcp composed of a rod and a coil block has received intensive interest owing to the complex phase structure prescribed by the large disparity of the flexibility of the constituting blocks as well as the strong self-organization driving force of the rod block. In addition to the conventional parameters such as segregation strength and constituent volume fraction, molecular architecture offers another important parameter for tuning the self-assembled structure of bcp. In this work, we systematically study the self-assembly behavior of the rod-coil block copolymers composed of poly(3-hexylthophene) (P3HT, A blok) as the rod and poly(ε-caprolactone) (PCL, B block) as the coil .The bcp systems studied bear the molecular architecture of AB, AB2, BAB and B2AB¬¬2. The crystallization kinetics of the PCL block was found to depend strongly on the molecular architecture; moreover, the architecture also influenced the interdomain distance of the microphase-separated structure, which was explained by considering the packing mode of the B block in the microdomains. To further explore the phase transition mechanism, temperature-dependent simultaneous SAXS and WAXS experiments were conducted. The results indicated the microphase separation always occurred before the crystallization of P3HT block in the cooling cycle. Moreover, the crystallizations of P3HT and PCL block were largely confined in the microdomains constructed by the microphase separation.
(1)Ikkala, O.;Brinke, G. T., Science, 2002, 295, 2407-2409.
(2)Whitesides, G. M.; Grzybowski,B., Science, 2002, 295, 2418-2421.
(3)Stupp, S. I.; LeBonheur, V.; Walker, K.; Li , L. S.; Huggins, K. E.; Keser, M.;.Amstutz, A., Science, 2002, 276, 384-389
(4)Farrell, R.A.; Fitzgerald, G. T.; Borah, D.; Holmes D. J.; Morris A. M., Journal of Molecular Sciences, 2009, 10, 3672-3712
(5)Klok, H.A.; Lecommandoux, S., Advanced Materials, 2001, 16, 1217-1229
(6)Meier, D.J., J. Polym. Sci., part C, 1969, 26, 81.
(7)Helfand, E., Macromolecules, 1975, 8, 552-556.
(8)Helfand, E.; Wasserman, Z. R., Macromolecules, 1976, 9, 879-887.
(9)Helfand, E.; Wasserman, Z. R., Macromolecules, 1979, 13, 994-998.
(10)Helfand, E.; Wasserman, Z. R., Macromolecules, 1978, 11, 960-966.
(11)Leibler, L., Macromolecules, 1980, 13, 1602-1617.
(12)Matsen, M. W.; Schick, M., Macromolecules, 1994, 72, 2660-2663.
(13)Matsen, M. W.; Bates, F. S., Macromolecules, 1996, 29, 1091-1098.
(14)Matsen, M. W.; Bates, F. S., Macromolecules, 1996, 29, 7641-7644.
(15)Semenov, A. N.; Vasilenko, S. V., Sov. Phys. JETP, 1986, 63(1), 70-79.
(16)Khandpur, A K; Farster ,S.; Bates, F. S., Macromolecules, 1995, 28, 8796-8806.
(17)Reenders, M.; ten Brinke, G. Macromolecules 2002, 35, 3266-3280
(18)Olsen, B. D., Segalman, R. A., Macromolecules, 2006, 39, 7078-7083.
(19)Olsen, B. D., Segalman, R. A., Macromolecules, 2007, 40, 6922-6929.
(20)Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R., Macromolecules, 2007, 40, 6990-6997.
(21)Elsenbaumer, D. L.; Jen, K. Y.; Oboodi, R., Synth. Met., 1986, 15, 169.
(22)Sato, M.; Tanaka, S.; Kaeriyama, K.; J. Chem. Soc., Chem. Commun., 1986, 873.
(23)Sugimoto, R.; Takeda, S.; Gu, H. B.; Yoshino, K., Chem. Express., 1986, 1, 635.
(24)Jen, K. Y.; Miller, G. G.; Elsenbaumer, R. L., J. Chem. Soc., Chem. Commun., 1986, 1346.
(25)Roncali, J.; Garreau, R.; Delabouglise, D.; Lemaire, F. M., Synth. Met., 1989, 28, C341.
(26)Chen, T. A.; Wu, X.; Rieke, R. D., J. Am. Chem. Soc., 1995, 117, 233-244.
(27)Liu, J. S.; Sheina, E.; Kowalewski, T.; McCullough, R. D., Angew. Chem., 2000, 114, 339-342.
(28)Lin, S. H.; Wu, S. J.; Ho, C. C.; Su, W. F., Macromolecules, 2013, 46, 2725-2732.
(29)Nandan, B.; Lee, C. H.; Chen, H. L.; Chen, W. C., Macromolecules, 2005, 38, 10117-10126.
(30)Lorenzo, A. T.; Muller, A.J.; Lin, M. C.; Chen, H. L.; Jeng, U. S.; Priftis, D; Pitsikalis, M.; Hadjichristidis, N., Macromolecules, 2009, 42, 8353-8364.
(31)Park, J.; Choi, C.; Hyum, S.; Moon, H. C.; Vincent Joseph, K. L.; Kim, J. K., Macromolecules, 2016, 49, 616-623.
(32)Cong, Y.; Wang, D.; Zhao, B.; Yan, T.; Li, L., Macromolecules, 2011, 44, 5878-5882.
(33)Lin, M. C.; Chen, H. L.; Su, W. B.; Su, C. J.; Jeng, U. S.; Tseng, F. Y.; Wu, J. Y.; Tsai, J. C.; Hashimoto, T., Macromolecules, 2012, 45, 5114-5127.
(34)Moon, H. C.; Bae, D.; Kim, J. K, Macromolecules, 2012, 45, 5201-5207.
(35)R. J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford University Press, New York 2000.
(36)Lin, Y. H.; Chen, H. L.; Goseki, R.; Hirao, A., Macromol. Chem. Phys, 2017, 218.