簡易檢索 / 詳目顯示

研究生: 張可薇
Chang, Ko-Wei
論文名稱: 利用酵母菌探討粒線體型態及功能與細胞衰老之關係
Mitochondrial Morphology and Functions Associated with Cellular Senescence in Saccharomyces cerevisiae
指導教授: 張壯榮
Chang, Chuang-Rung
口試委員: 張晃猷
羅椀升
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 79
中文關鍵詞: 粒線體動態平衡細胞衰老
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒線體藉由分裂與融合的動態平衡進行形態調控。酵母菌調控分裂的蛋白是Dnm1p及Fis1p;而Fzo1p及Mgm1p則是負責融合。粒線體分裂及融合可以進而調控腺苷三磷酸(ATP)及活性氧(ROS)的淨產量、粒線體內的物質交換、並剔除受損傷的粒線體。伴隨老化產生的神經退化性疾病與粒線體功能受損有高度相關性。然而,衰老現象與粒線體動態平衡的關聯性尚未明確,所以本篇以酵母菌的複製性衰老模式來研究粒線體的動態平衡與細胞衰老的關係。
    實驗發現複製性衰老細胞粒線體呈現短小碎片狀;利用基因剔除於顯微影像實驗中,證實動態平衡調控機制參與改變複製性衰老細胞中之粒線體型態。除此之外,衰老細胞之分裂基因(FIS1)表現量較高,我們對分裂基因(FIS1)於複製性衰老細胞中表現量較高的原因加以探究。我們也發現在複製性衰老細胞中其粒線體基因數量會隨著衰老的過程增加;或許是衰老細胞為了維持粒線體之生合成及其功能所產生的補償作用。酵母菌另一個衰老模式,慢性衰老,其粒線體型態則與複製性衰老細胞之粒線體型態不同。本篇結果可以說明細胞衰老確實影響了粒線體動態平衡的調控,並且藉由改變粒線體形態,進而影響衰老細胞中粒線體生合成。


    Mitochondrial morphology is in a dynamic balance between the fission and fusion. In yeast, the major fission proteins are Dnm1p and Fis1p, while Fzo1p and Mgm1p are involved in fusion. The mitochondrial fission/fusion machineries are associated with the regulation of mitochondrial functions including: the regulation of ATP production, the level of reactive oxygen species (ROS), the influx and efflux of material in mitochondria, and the removal of defective mitochondria (mitophagy). Previous studies have demonstrated that the impaired mitochondrial function is closely related to neurodegenerative diseases. In addition, many neurodegenerative disorders are progressed with aging. However, the relationship between cellular senescence and mitochondrial dynamics remains obscure. In this thesis, we applied yeast replicative senescent model to clarify the correlation between cellular senescence and mitochondria dynamics. We found that majority of senescent cells have fragmented mitochondria. By using gene deletion strains in bioimaging analyses, we found that cellular senescence associated mitochondrial fragmentation depends on conventional mitochondrial fission proteins. In addition, we found that the senescent cells have higher mRNA level of fission genes. We then examined one of the potential causes of that the higher level of fission genes in replicative senescent cells. Our results also demonstrated that the mitochondrial DNA copy number increases in replicative senescent cells. Furthermore, mitochondria dynamics in chronological senescent cells was found to be distinct from replicative senescent cells. These results indicate that cellular senescence does have effects on mitochondria dynamics.

    CONTENTS 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv Chapter 1 Introduction 1 1.1 Senescence is an irreversible process 1 1.2 A good model to study cellular senescence 4 1.2.1 Yeast as a good model organism for studying cellular senescence 4 1.2.2 Two types of cellular senescence model in yeast- replicative and chronological senescence 5 1.3 Mitochondrial morphology is dynamic in yeast cells 7 1.4 The function of mitochondrial dynamics 9 1.5 The specific aim of the thesis 11 Chapter 2 Materials and methods 13 2.1 Special reagents & equipment 13 2.2 Microbial strains 13 2.3 Experimental protocols 13 2.3.1 E. coli transformation & plasmid mini-preparation 13 2.3.2 Competent cell preparation 14 2.3.3 Yeast transformation 15 2.3.4 Cell sorting for replicative senescent yeast 15 2.3.5 Collecting of chronological senescent yeast 16 2.3.6 Fixation of mitochondrial morphology 16 2.3.7 Yeast RNA extraction 17 2.3.8 Reverse transcription polymerase chain reaction 18 2.3.9 Polymerase chain reaction (PCR) 18 2.3.10 Real time PCR 18 2.3.11 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting analysis 19 2.3.12 Chromatin immunoprecipitation assay 20 2.3.13 Mitochondria staining 22 Chapter 3 Results 23 3.1 Magnetically sorted cells demonstrated replicative senescent features 23 3.1.1 Cells with magnetic beads are dominated in the adsorbed sample after sorting 23 3.1.2 Sorted senescent cells have large size than unsorted cells. 23 3.1.3 More extrachromosomal rDNA circles are accumulated in adsorbed cells than unsorted young cells. 24 3.2 Mitochondrial morphology in replicative and chronological senescent yeast cells are different 24 3.2.1 Replicative senescent cells have fragmented mitochondria 24 3.2.2 Fragmented mitochondria in replicative senescent cells depend on Dnm1 and Fis1. 25 3.2.3 Expression level of FIS1 increases in replicative senescent cells 26 3.2.4 Chronological senescent cells have complicated mitochondrial morphology. 26 3.3 Mitochondrial DNA copy number is affected during replicative senescent process 27 3.4 Mitophagy is affected during senescent process 28 3.4.1 Mitophagy activation is decreased during senescent process 28 3.5 Clarifying the factors that regulate mitochondrial dynamics related genes during cellular senescence. 29 3.5.1 The acetylation status at DNM1 and FIS1 promoter region are not affected in senescent cells. 29 Chapter 4 Conclusions and Discussion 32 4.1 Conclusion 32 4.2 Discussion 32 4.2.1 Mitochondrial fragmentation in replicative senescent yeast depend on fission proteins 32 4.2.2 The physiological implications of the increased mitochondrial DNA copy number in cellular senescence. 33 4.2.3 The regulation of mitochondrial dynamic genes. 35 4.3 Perspectives of the research 37 REFERENCES 73 LIST OF FIGURES Figure 1. Mitochondria are a dynamic organelle. 39 Figure 2. The definition of replicative senescent cells and the principle of sorting the replicative senescent cells from a yeast population. 41 Figure 3. The definition of chronological senescent cells. 43 Figure 4. Cells with magnetic beads are dominated in the adsorbed sample after sorting. 45 Figure 5. Magnetic sorted senescent cells have larger size than non-adsorbed cells. 47 Figure 6. More extrachromosomal rDNA circles appears to accumulate in the adsorbed cells than the log phase cells 49 Figure 7. Replicative senescent yeast cells have more fragmented mitochondria. 51 Figure 8. Mitochondrial fragmentation in replicative senescent cells depends on the fission protein, Dnm1p. 53 Figure 9. Mitochondrial fragmentation in replicative senescent cells also depends on the fission protein, Fis1p. 55 Figure 10. The expression level of Dnm1p remains the same between the replicative senescent and young cells. 57 Figure 11. mRNA level of the fission gene, FIS1, increases in replicative senescent cells. 59 Figure 12. The morphology of mitochondria changes mitochondrial DNA copy number in replicative senescent cells. 61 Figure 13. The protein level of Atg8 decreases in replicative senescent cells. 63 Figure 14. The validation of acetylation of H4K16 by chromatin immuneprecipitation assay 65 Figure 15. The elevation of mitochondrial fission genes in replicative senescent cells is not due to H4K16 acetylation. 67 LIST OF TABLES Table 1. Strains of use 69 Table 2. Primer of use 70 Table 3. The condition of polymerase chain reaction 71 Table 4. Abbreviations 72

    Aliev, G., Seyidova, D., Lamb, B.T., Obrenovich, M.E., Siedlak, S.L., Vinters, H.V., Friedland, R.P., LaManna, J.C., Smith, M.A., and Perry, G. (2003). Mitochondria and vascular lesions as a central target for the development of Alzheimer's disease and Alzheimer disease-like pathology in transgenic mice. Neurological research 25, 665-674.
    Barral, Y., Mermall, V., Mooseker, M.S., and Snyder, M. (2000). Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell 5, 841-851.
    Barros, M.H., da Cunha, F.M., Oliveira, G.A., Tahara, E.B., and Kowaltowski, A.J. (2010). Yeast as a model to study mitochondrial mechanisms in ageing. Mech Ageing Dev 131, 494-502.
    Barsoum, M.J., Yuan, H., Gerencser, A.A., Liot, G., Kushnareva, Y., Graber, S., Kovacs, I., Lee, W.D., Waggoner, J., Cui, J., et al. (2006). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. The EMBO journal 25, 3900-3911.
    Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H., Jaros, E., Hersheson, J.S., Betts, J., Klopstock, T., et al. (2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38, 515-517.
    Brownell, J.E., and Allis, C.D. (1996). Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Current opinion in genetics & development 6, 176-184.
    Bulger, M. (2005). Hyperacetylated chromatin domains: lessons from heterochromatin. J Biol Chem 280, 21689-21692.
    Burhans, W.C., and Weinberger, M. (2009). Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes? Cell Cycle 8, 2300-2302.
    Burtner, C.R., Murakami, C.J., Kennedy, B.K., and Kaeberlein, M. (2009). A molecular mechanism of chronological aging in yeast. Cell Cycle 8, 1256-1270.
    Cano, F., Simon, C., Remohi, J., and Pellicer, A. (1995). Effect of aging on the female reproductive system: evidence for a role of uterine senescence in the decline in female fecundity. Fertility and sterility 64, 584-589.
    Cartoni, R., Leger, B., Hock, M.B., Praz, M., Crettenand, A., Pich, S., Ziltener, J.L., Luthi, F., Deriaz, O., Zorzano, A., et al. (2005). Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567, 349-358.
    Catalano, A., Rodilossi, S., Caprari, P., Coppola, V., and Procopio, A. (2005). 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. EMBO J 24, 170-179.
    Chang, C.R., and Blackstone, C. (2007). Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282, 21583-21587.
    Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18, R169-176.
    Chen, H., Chomyn, A., and Chan, D.C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. The Journal of biological chemistry 280, 26185-26192.
    Chen, H., McCaffery, J.M., and Chan, D.C. (2007). Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548-562.
    Chen, H., Vermulst, M., Wang, Y.E., Chomyn, A., Prolla, T.A., McCaffery, J.M., and Chan, D.C. (2010). Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280-289.
    Chomyn, A., and Attardi, G. (2003). MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun 304, 519-529.
    Cuervo, A.M., and Dice, J.F. (2000). Age-related decline in chaperone-mediated autophagy. J Biol Chem 275, 31505-31513.
    Dang, W., Steffen, K.K., Perry, R., Dorsey, J.A., Johnson, F.B., Shilatifard, A., Kaeberlein, M., Kennedy, B.K., and Berger, S.L. (2009). Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802-807.
    Darios, F., Corti, O., Lucking, C.B., Hampe, C., Muriel, M.P., Abbas, N., Gu, W.J., Hirsch, E.C., Rooney, T., Ruberg, M., et al. (2003). Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12, 517-526.
    Delettre, C., Lenaers, G., Griffoin, J.M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., et al. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature genetics 26, 207-210.
    Deshpande, A., Alliegro, C., Chaloupka, V.V., Egger, J., Gordon, H.A., Hadley, N.J., Herold, W.D., Kaspar, H., Lee, A.M., Lazarus, D.M., et al. (1993). Determination of the branching ratio of the decay pi 0-->e+e. Physical review letters 71, 27-30.
    Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature reviews Molecular cell biology 8, 870-879.
    Di Leonardo, A., Linke, S.P., Clarkin, K., and Wahl, G.M. (1994). DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes & development 8, 2540-2551.
    Duvezin-Caubet, S., Jagasia, R., Wagener, J., Hofmann, S., Trifunovic, A., Hansson, A., Chomyn, A., Bauer, M.F., Attardi, G., Larsson, N.G., et al. (2006). Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. The Journal of biological chemistry 281, 37972-37979.
    Fabrizio, P., and Longo, V.D. (2007). The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol 371, 89-95.
    Fabrizio, P., and Longo, V.D. (2008). Chronological aging-induced apoptosis in yeast. Biochimica et biophysica acta 1783, 1280-1285.
    Fritz, S., Rapaport, D., Klanner, E., Neupert, W., and Westermann, B. (2001). Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. The Journal of cell biology 152, 683-692.
    Fukuda, M., Taguchi, T., and Ohashi, M. (1999). Age-dependent changes in DNA polymerase fidelity and proofreading activity during cellular aging. Mechanisms of ageing and development 109, 141-151.
    Fukushima, N.H., Brisch, E., Keegan, B.R., Bleazard, W., and Shaw, J.M. (2001). The GTPase effector domain sequence of the Dnm1p GTPase regulates self-assembly and controls a rate-limiting step in mitochondrial fission. Molecular biology of the cell 12, 2756-2766.
    Gegg, M.E., Cooper, J.M., Chau, K.Y., Rojo, M., Schapira, A.H., and Taanman, J.W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human molecular genetics 19, 4861-4870.
    Goffeau, A., and Vassarotti, A. (1991). The European project for sequencing the yeast genome. Res Microbiol 142, 901-903.
    Griffin, E.E., and Chan, D.C. (2006). Domain interactions within Fzo1 oligomers are essential for mitochondrial fusion. J Biol Chem 281, 16599-16606.
    Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389, 349-352.
    Harder, Z., Zunino, R., and McBride, H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current biology : CB 14, 340-345.
    Hayflick, L. (1985). Theories of biological aging. Exp Gerontol 20, 145-159.
    Henderson, K.A., and Gottschling, D.E. (2008). A mother's sacrifice: what is she keeping for herself? Curr Opin Cell Biol 20, 723-728.
    Herker, E., Jungwirth, H., Lehmann, K.A., Maldener, C., Frohlich, K.U., Wissing, S., Buttner, S., Fehr, M., Sigrist, S., and Madeo, F. (2004). Chronological aging leads to apoptosis in yeast. The Journal of cell biology 164, 501-507.
    Hermann, G.J., and Shaw, J.M. (1998). Mitochondrial dynamics in yeast. Annual review of cell and developmental biology 14, 265-303.
    Hermann, G.J., Thatcher, J.W., Mills, J.P., Hales, K.G., Fuller, M.T., Nunnari, J., and Shaw, J.M. (1998). Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. The Journal of cell biology 143, 359-373.
    Hood, D.A. (2001). Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90, 1137-1157.
    Hori, A., Yoshida, M., and Ling, F. (2011). Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast. Genes to cells : devoted to molecular & cellular mechanisms 16, 527-544.
    Hori, A., Yoshida, M., Shibata, T., and Ling, F. (2009). Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication. Nucleic acids research 37, 749-761.
    Jensen, R.E., Hobbs, A.E., Cerveny, K.L., and Sesaki, H. (2000). Yeast mitochondrial dynamics: fusion, division, segregation, and shape. Microsc Res Tech 51, 573-583.
    Jin, S.M., and Youle, R.J. (2012). PINK1- and Parkin-mediated mitophagy at a glance. Journal of cell science 125, 795-799.
    Jones, B.A., and Fangman, W.L. (1992). Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes & development 6, 380-389.
    Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513-519.
    Karbowski, M., Arnoult, D., Chen, H., Chan, D.C., Smith, C.L., and Youle, R.J. (2004). Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. The Journal of cell biology 164, 493-499.
    Karren, M.A., Coonrod, E.M., Anderson, T.K., and Shaw, J.M. (2005). The role of Fis1p-Mdv1p interactions in mitochondrial fission complex assembly. The Journal of cell biology 171, 291-301.
    Kim, I., Rodriguez-Enriquez, S., and Lemasters, J.J. (2007). Selective degradation of mitochondria by mitophagy. Archives of biochemistry and biophysics 462, 245-253.
    Kobayashi, S., Tanaka, A., and Fujiki, Y. (2007). Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Experimental cell research 313, 1675-1686.
    Koirala, S., Bui, H.T., Schubert, H.L., Eckert, D.M., Hill, C.P., Kay, M.S., and Shaw, J.M. (2010). Molecular architecture of a dynamin adaptor: implications for assembly of mitochondrial fission complexes. The Journal of cell biology 191, 1127-1139.
    Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence. Genes & development 24, 2463-2479.
    Laun, P., Rinnerthaler, M., Bogengruber, E., Heeren, G., and Breitenbach, M. (2006). Yeast as a model for chronological and reproductive aging - a comparison. Experimental gerontology 41, 1208-1212.
    Lee, D.Y., Hayes, J.J., Pruss, D., and Wolffe, A.P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73-84.
    Lee, H.C., and Wei, Y.H. (1997). Mutation and oxidative damage of mitochondrial DNA and defective turnover of mitochondria in human aging. Journal of the Formosan Medical Association = Taiwan yi zhi 96, 770-778.
    Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A., et al. (1998). The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366, 177-196.
    Li, X., and Gould, S.J. (2003). The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 278, 17012-17020.
    Liu, X., Weaver, D., Shirihai, O., and Hajnoczky, G. (2009). Mitochondrial 'kiss-and-run': interplay between mitochondrial motility and fusion-fission dynamics. EMBO J 28, 3074-3089.
    Longo, V.D., and Finch, C.E. (2003). Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299, 1342-1346.
    Mai, S., Klinkenberg, M., Auburger, G., Bereiter-Hahn, J., and Jendrach, M. (2010). Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. Journal of cell science 123, 917-926.
    Malfatti, E., Bugiani, M., Invernizzi, F., de Souza, C.F., Farina, L., Carrara, F., Lamantea, E., Antozzi, C., Confalonieri, P., Sanseverino, M.T., et al. (2007). Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy. Brain 130, 1894-1904.
    Mandemakers, W., Morais, V.A., and De Strooper, B. (2007). A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120, 1707-1716.
    McFarland, G.A., and Holliday, R. (1994). Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Experimental cell research 212, 167-175.
    Meeusen, S., DeVay, R., Block, J., Cassidy-Stone, A., Wayson, S., McCaffery, J.M., and Nunnari, J. (2006). Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127, 383-395.
    Merz, S., Hammermeister, M., Altmann, K., Durr, M., and Westermann, B. (2007). Molecular machinery of mitochondrial dynamics in yeast. Biological chemistry 388, 917-926.
    Mozdy, A.D., McCaffery, J.M., and Shaw, J.M. (2000). Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. The Journal of cell biology 151, 367-380.
    Murakami, C., and Kaeberlein, M. (2009). Quantifying yeast chronological life span by outgrowth of aged cells. Journal of visualized experiments : JoVE.
    Nakamura, N., Kimura, Y., Tokuda, M., Honda, S., and Hirose, S. (2006). MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO reports 7, 1019-1022.
    Narendra, D.P., and Youle, R.J. (2011). Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal 14, 1929-1938.
    Navratil, M., Terman, A., and Arriaga, E.A. (2008). Giant mitochondria do not fuse and exchange their contents with normal mitochondria. Experimental cell research 314, 164-172.
    Okamoto, K., and Shaw, J.M. (2005). Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annual review of genetics 39, 503-536.
    Orgel, L.E. (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proceedings of the National Academy of Sciences of the United States of America 49, 517-521.
    Otsuga, D., Keegan, B.R., Brisch, E., Thatcher, J.W., Hermann, G.J., Bleazard, W., and Shaw, J.M. (1998). The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. The Journal of cell biology 143, 333-349.
    Pan, Y. (2011). Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol 46, 847-852.
    Petit, A., Kawarai, T., Paitel, E., Sanjo, N., Maj, M., Scheid, M., Chen, F., Gu, Y., Hasegawa, H., Salehi-Rad, S., et al. (2005). Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 280, 34025-34032.
    Pich, S., Bach, D., Briones, P., Liesa, M., Camps, M., Testar, X., Palacin, M., and Zorzano, A. (2005). The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14, 1405-1415.
    Poole, A.C., Thomas, R.E., Yu, S., Vincow, E.S., and Pallanck, L. (2010). The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PloS one 5, e10054.
    Rapaport, D., Brunner, M., Neupert, W., and Westermann, B. (1998). Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. The Journal of biological chemistry 273, 20150-20155.
    Rattan, S.I. (1996). Synthesis, modifications, and turnover of proteins during aging. Experimental gerontology 31, 33-47.
    Rattan, S.I. (2006). Theories of biological aging: genes, proteins, and free radicals. Free radical research 40, 1230-1238.
    Rube, D.A., and van der Bliek, A.M. (2004). Mitochondrial morphology is dynamic and varied. Molecular and cellular biochemistry 256-257, 331-339.
    Sesaki, H., and Jensen, R.E. (2004). Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J Biol Chem 279, 28298-28303.
    Shaw, J.M., and Nunnari, J. (2002). Mitochondrial dynamics and division in budding yeast. Trends in cell biology 12, 178-184.
    Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91, 1033-1042.
    Sitarz, K.S., Yu-Wai-Man, P., Pyle, A., Stewart, J.D., Rautenstrauss, B., Seeman, P., Reilly, M.M., Horvath, R., and Chinnery, P.F. (2012). MFN2 mutations cause compensatory mitochondrial DNA proliferation. Brain : a journal of neurology.
    Smeal, T., Claus, J., Kennedy, B., Cole, F., and Guarente, L. (1996). Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84, 633-642.
    Sohal, R.S., and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science 273, 59-63.
    Song, Z., Chen, H., Fiket, M., Alexander, C., and Chan, D.C. (2007). OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. The Journal of cell biology 178, 749-755.
    Soriano, F.X., Liesa, M., Bach, D., Chan, D.C., Palacin, M., and Zorzano, A. (2006). Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 55, 1783-1791.
    Steffen, K.K., Kennedy, B.K., and Kaeberlein, M. (2009). Measuring replicative life span in the budding yeast. J Vis Exp.
    Storz, P. (2006). Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci STKE 2006, re3.
    Stvolinsky, S., Antipin, M., Meguro, K., Sato, T., Abe, H., and Boldyrev, A. (2010). Effect of carnosine and its Trolox-modified derivatives on life span of Drosophila melanogaster. Rejuvenation research 13, 453-457.
    Suenaga, M. (2010). [Study on the novel factors regulating mitochondrial dynamics]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 130, 1543-1547.
    Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282, 11521-11529.
    Takizawa, P.A., DeRisi, J.L., Wilhelm, J.E., and Vale, R.D. (2000). Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341-344.
    Tieu, Q., Okreglak, V., Naylor, K., and Nunnari, J. (2002). The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. The Journal of cell biology 158, 445-452.
    Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27, 433-446.
    Vernet, T., Dignard, D., and Thomas, D.Y. (1987). A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52, 225-233.
    Wang, J.X., Jiao, J.Q., Li, Q., Long, B., Wang, K., Liu, J.P., Li, Y.R., and Li, P.F. (2011). miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nature medicine 17, 71-78.
    Waterham, H.R., Koster, J., van Roermund, C.W., Mooyer, P.A., Wanders, R.J., and Leonard, J.V. (2007). A lethal defect of mitochondrial and peroxisomal fission. The New England journal of medicine 356, 1736-1741.
    Wei, Y.H., and Lee, H.C. (2002). Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood) 227, 671-682.
    Westermann, B., and Neupert, W. (2000). Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16, 1421-1427.
    Yang, J.H., Lee, H.C., Lin, K.J., and Wei, Y.H. (1994). A specific 4977-bp deletion of mitochondrial DNA in human ageing skin. Arch Dermatol Res 286, 386-390.
    Yonashiro, R., Ishido, S., Kyo, S., Fukuda, T., Goto, E., Matsuki, Y., Ohmura-Hoshino, M., Sada, K., Hotta, H., Yamamura, H., et al. (2006). A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25, 3618-3626.
    Zagulski, M., Herbert, C.J., and Rytka, J. (1998). Sequencing and functional analysis of the yeast genome. Acta Biochim Pol 45, 627-643.
    Zhou, Z., Kim, Y.J., Pollok, K., Hurtado, J., Lee, J.K., Broxmeyer, H.E., and Kwon, B.S. (1993). Macrophage inflammatory protein-1 alpha rapidly modulates its receptors and inhibits the anti-CD3 mAb-mediated proliferation of T lymphocytes. J Immunol 151, 4333-4341.
    Ziviani, E., Tao, R.N., and Whitworth, A.J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proceedings of the National Academy of Sciences of the United States of America 107, 5018-5023.
    Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature genetics 36, 449-451.
    Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M., and McBride, H.M. (2007). The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. Journal of cell science 120, 1178-1188.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE