研究生: |
王薇雅 Wang, Wei-Ya |
---|---|
論文名稱: |
利用模擬最佳化於有限成本下求解機台選擇問題 Solving Probability-based Machine Selection Problem via Simulation Optimization |
指導教授: |
張國浩
Chang, Kuo-Hao |
口試委員: |
林春成
Lin, Chun-Cheng 劉建良 Liu, Chien-Liang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 機台選擇問題 、模擬最佳化 、巢狀分割法 、Nelder-Mead |
外文關鍵詞: | Machine Selection, Simulation Optimization, Nested Partitions, Nelder-Mead Method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的製造業及科技業中,購買製造流程所需的機台為公司往自動化前進的第一步驟,所以當在購買機台時,正確的運用資金是相當重要的。而在現在這個講求效率的製造業環境下,為了長久的生產目標,公司必須決策如何在有限成本下,為每一個工作站選擇合適的機台種類與個數,使得能夠順利完成訂單的機率最高,是我們所要探討的主要問題,在此問題下,決策變數取決於購買的機台數量及種類,限制為有限的資金及每個工作站所能夠容納的機台數量,而最後的輸出為完成所有訂單的機率,又機台選擇正是屬於組合最佳化的問題,此類之問題被歸類為NP-hard,當組合數越多時,其複雜度就越高,且本研究之問題考慮到生產之不確定性故選擇利用模擬最佳化,求解難度更勝NP-hard,找到最佳的機台選擇方式也就越困難。
本研究發展一套以巢狀分割法(Nested Partitions Method)為基礎之模擬最佳化演算法以處理大型複雜之機台選擇問題,其概念是利用巢狀分割結合Nelder-Mead演算法,因可行解區域非常大,故我們利用巢狀分割來有效的切割可行解區域以解決如此大規模的問題。在本研究的數值中顯示,在有限的電腦資源下,我們仍可得到一個近似最佳解或最佳解,並將其與現有常用的禁忌搜尋法及單純使用巢狀分割法做比較,計算出的效果及效率更佳。
Nowadays, for industries in manufacturing and technology, purchasing machines required in manufacturing processes is the first step toward automation. Therefore, the correct usage of funds is very important when we buy machines. In this study, we focus on how to choose the appropriate type and number of machines for each workstation under a limited cost constraint while maximizing the probability of achieving the required capacity. The machine selection problem is a type of combination optimization. When the number of combinations is higher, the complexity increases, and finding the optimal solution becomes more difficult.
This study develops a set of simulation optimization algorithms based on the Nested Partitions method to deal with large scale machine selection problems. The framework involves using the Nested Partitions method combined with Nelder-Mead method. In this way, we can greatly reduce the amount of computations needed to solve large scale problems. Besides, by using a variance reduction procedure in the simulation process, we can make the screening results more reasonable and correct. Based on experimental results, we can achieve an optimal solution or a solution which is closed to the optimum under a limited computational budget. Furthermore, we compare our methodology with two common existing methods (Taboo Search method and the simple Nested Partitions method), finding that the current framework outperforms both in terms of effectiveness and efficiency.
Ahmed, S., King, A. J., & Parija, G. (2003). A multi-stage stochastic integer programming approach for capacity expansion under uncertainty. Journal of Global Optimization, 26, 3-24.
Carson, Y., & Maria, A. (1997, December). Simulation optimization: methods and applications. In Proceedings of the 29th Conference on Winter Simulation, 118-126.
Cao, D., Chen, M., & Wan, G. (2005). Parallel machine selection and job scheduling to minimize machine cost and job tardiness. Computers & Operations Research, 32, 1995-2012.
Chelouah, R., & Siarry, P. (2003). Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. European Journal of Operational Research, 148, 335-348.
Chtourou, H., Masmoudi, W., & Maalej, A. (2005). An expert system for manufacturing systems machine selection. Expert Systems with Applications, 28, 461-467.
Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14, 192-215.
He, Y., Li, Y., Wu, T., & Sutherland, J. W. (2015). An energy-responsive optimization method for machine tool selection and operation sequence in flexible machining job shops. Journal of Cleaner Production, 87, 245-254.
Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling problem with multi-purpose machines. Operations-Research-Spektrum, 15, 205-215.
Jahromi, M. H. M. A., Tavakkoli-Moghaddam, R., Makui, A., & Saghaee, A. (2015). A modified genetic algorithm for solving machine-tool selection and operation allocation problem in an FMS. J. UMP Social Sci. Technol. Manage., 3, 491-499.
Luersen, M. A., & Le Riche, R. (2004). Globalized Nelder–Mead method for engineering optimization. Computers & Structures, 82, 2251-2260.
Myint, S., & Tabucanon, M. T. (1994). A multiple-criteria approach to machine selection for flexible manufacturing systems. International Journal of Production Economics, 33, 121-131.
Sadeghian, R., & Sadeghian, M. R. (2016). A decision support system based on artificial neural network and fuzzy analytic network process for selection of machine tools in a flexible manufacturing system. The International Journal of Advanced Manufacturing Technology, 82, 1795-1803.
Schultz, R., Stougie, L., & Van Der Vlerk, M. H. (1996). Two‐stage stochastic integer programming: a survey. Statistica Neerlandica, 50, 404-416.
Shi, L., & Ólafsson, S. (2000). Nested partitions method for global optimization. Operations Research, 48, 390-407.
Stam, A., & Kuula, M. (1991). Selecting a flexible manufacturing system using multiple criteria analysis. The International Journal of Production Research, 29, 803-820.
Tabucanon, M. T., Batanov, D. N., & Verma, D. K. (1994). Decision support system for multicriteria machine selection for flexible manufacturing systems. Computers in Industry, 25, 131-143.
Taha, Z., & Rostam, S. (2011). A fuzzy AHP–ANN-based decision support system for machine tool selection in a flexible manufacturing cell. The International Journal of Advanced Manufacturing Technology, 57, 719.
Yıldız, A. R., Yıldız, B. S., Sait, S. M., Bureerat, S., & Pholdee, N. (2019). A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems. Materials Testing, 61, 735-743.