簡易檢索 / 詳目顯示

研究生: 熊書顯
論文名稱: 聚類分析在體適能上的應用
指導教授: 洪文良
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 18
中文關鍵詞: 聚類分析體適能
外文關鍵詞: Cluster Analysis, Physical Fitness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在模糊聚類分析中,有很多模糊聚類的演算法,模糊c均值(
    Fuzzy c-means)聚類演算法是比較廣泛被使用的方法,在很多的文獻中,FCM演算法被做的許多推廣,因此產生的許多模糊聚類演算法,例如:RFCM,CFCM,AFCM,PFCM,PIM,ICS,MEC,FRC及FGcM演算法等等,都是FCM的推廣。
    在這篇論文當中,我們要討論的是由FCM推廣的FRC(Fuzzy
    Realtional Data Clustering)演算法在體適能上的應用,首先我們用體適能測驗中,20歲到65歲坐姿體前彎測驗的常態型模糊資料,運用LR-類型模糊數的結論去定義一個矩陣 ,再以FRC演算法對矩陣 做聚類分析,然後用MPC指標來判斷哪一個聚類結果較好,再跟醫學資料的分析做比較,來判斷FRC演算法的
    聚類結果是否合理。


    In fuzzy cluster analysis, there are many fuzzy clustering algorithms.
    The fuzzy c-means (FCM)clustering algorithm is the most widely used method. In many literatures, FCM clustering algorithm produces many fuzzy clustering algorithms,such as relation dual of fuzzy c-means
    (RFCM),conditional fuzzy c-means(CFCM),alternat i ve fuzzy c-
    means (AFCM), penalized fuzzy c-means(PFCM),partition index max imization(PIM) ,inter-cluster soparation(ICS),maximum entropy-based
    clutering(MEC) ,fuzzy relational dataclutering(FRC) and fuzzy generalized
    c-means(FGCM) develop algorithm,etc.
    In this paper, we apply FRC(Fuzzy Realtional Data Clustering)to the analysis of the data of sit and reach tests of Physical Fitness and compare the results with its original data. First,we use the real data from sit-and-reach tests of Physical Fitness of the people in Taiwan between 20 years old to 65 year old to define a metric which base on LR-type fuzzy numbers. Then we use FRC algorithm to compare and we consider which result is better by MPC index. At last,we
    investgate the differnces between the results and Medicine data.

    目錄 第一章 序論 1 第二章 FRC演算法、LR-類型模糊數及MPC指標的探討 3 第三章 體適能數值資料的比較與結果 9 第四章 結論 15 參考文獻 16 作者簡介 18 圖表目錄 表一  坐姿體前彎的測驗結果 10 表二  根據LR-類型模糊數的結論所定義的矩陣dLR(X,Y) 11 表三 不同的聚類的MPC指標數值 11 表四 聚類成五群下的隸屬度 12

    [1] L.A.Zandeh,Fuzzy sets,Information and Control,vol.8,pp.338-353,1965
    [2] J.C.Bezdek,Pattern Recognition with Fuzzy Objective Function Algorithms,
    Plenum Press,New York,1981
    [3] F.Hoppner and F.Klawonn,R.Kruse and T.Runkler,Fuzzy Cluster Analysis:
    Methods for Classification Data Analysis and Image Recognition,Wiley,New
    York,1999
    [4] M.S.Yang,A survey of fuzzy clustering,Mathematical and Computer
    Modeling ,vol18,pp.1-16,1993
    [5] R.N.Davé,S.Sen, Robust Fuzzy Clustering of Relational Data, IEEE
    Trans. Systems, vol.10,pp.713-726 no. 6, 12,2002
    [6] R. J. Hathaway, J. W. Devenport, andJ. C. Bezdek, “Relation duals of the c-means clustering algorithms, Pattern Recog., vol. 22, pp. 205–212, 1988
    [7] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduc¬tion to
    ClusterAnalysis. New York: Wiley, 1990.
    [8] H.J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer, Dordrecht, 1991.
    [9] W.L.Hung and M.S.Yang(2005)
    [10] M.S. Yang, C.H. Ko, On cluster-wise fuzzy regression analysis, IEEE Trans.
    on Systems, Man and Cybernetics-Part B 27,pp 1-13 .1997
    [11] P.Corsini B.Lazzerini B. Marcelloni.A new fuzzy relayional clustering
    Alogorithm based on the fuzzy c-means algorithm.,2004
    [12] Health Physical Fitness Norm Report, executed by National Colledge of Physical Education and Sports, Taiwan, Published by National Council on
    Physical Fitness and Sports, Taiwan, R.O.C, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE