簡易檢索 / 詳目顯示

研究生: 黃一展
Hunag, Yi-Jan
論文名稱: 氦原子21S0-31D2雙光子光譜精密量測
Precise Measurement of the 21S0-31D2 Two-Photon Transitions in Atomic 4He and 3He
指導教授: 施宙聰
Shy, Jow-Tsong
口試委員: 王立邦
Wang, Li-Bang
劉怡維
Liu, I-Wei
孔慶昌
KUNG, A. H.
周哲仲
Chou, Che-Chung
蔡錦俊
Tsai, Chin-Chun
鄭王曜
Cheng, Wang-Yau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 98
中文關鍵詞: 光譜氦原子雙光子躍遷蘭姆位移同位素位移精密量測
外文關鍵詞: Spectroscopy, Helium, Two-photon transition, Lamb shift, isotope shift, precision measurement
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在 Helium 上的絕對頻率量測有兩個重要的目標,第一個目標是驗證蘭姆位移 (Lamb shift),蘭姆位移包含在 QED 理論計算中的 5, 6 和 7 階中,對於氦原子 n = 2 個能 階,蘭姆位移計算的不準確度在 0.5 到 2MHz 範圍內,並且主要是由第 7 項貢獻,第二 個目標是推論氦原子核尺寸,藉由測量同一躍遷中的同位素偏移,此時 QED 計算的不 準度很高的項目很大程度上會被消除,並且它給出了同位素之間核電荷半徑的差異。
    我們測量了 3He 和 4He 中的 21S0 - 31D2 雙光子躍遷,以 OFC 作為絕對頻率的基準 值,3He 和 4He 中 21S0 - 31D2 的中心頻率分別為 594 384 761.556(12)MHz 和 594 414 291.803(13)MHz,在我們的實驗結果中量測不準度優於 13kHz。在 4 中,我們決定了 目前最精確的 21S0 能階的電離能 (Ionziation energy) 為 960 332 040.823(24)MHz,其 不準度主要受限於理論計算的 3D 能階(20 kHz)的不準度。進一步的推導出 21S0 和 23S1 蘭姆位移分別為 2806.864(24)MHz 和 4058.130(24)MHz,比先前的決定值要 好 1.6 倍,在 4He 的量測中我們也間接決定了 33D1-31D2 為 101 143.889(29)MHz,改 進了先前的結果 11 倍。
    在 3He 的實驗量測中,31D2 能階的超精細結構 (Hyperfine structure) 首次被解析, 其測量超精細分離是 139.873(7)MHz。經由我們的測量決定 3He 和 4He 的同位素 移位為 29.530±246(18)GHz。因此,3He 和 4He 的核電荷半徑差 (Difference in the nuclear charge radii) 可以推導為 1.061(25)fm2,另外,結合其他的量測結果,3He 的 33D1-31D2 為 101 058 203(56)kHz,這個決定值改進了先前的結果 90 倍。


    There are two essential objectives in our work for helium. The first objective is the verifi- cation of the Lamb shift. The Lamb shift is included in the α5, α6, and α7 terms in the QED theoretical calculation where the uncertainty of the Lamb shift ranges from 0.5 to 2 MHz for the n = 2 states and is mainly due to the term in α7. The second objective is the determination of the finite nuclear size. The uncertainty from the QED calculation becomes much smaller for the isotope shift in the same transition. The difference of the nuclear charge radius between isotopes can be derived from the isotope shift.
    We present the precision measurements for 21S0 - 31D2 two photon transitions in both 3He and 4He. Using an optical frequency comb (OFC) for the frequency metrology, the central frequencies of the 21 S0 -31 D2 in 3 He and 4 He are 594 384 761.556(12) MHz and 594 414 291.803(13) MHz respectively. The experimental uncertainty in our results is better than 13 kHz, which is near the limit of the natural linewidth of 10.36 MHz.
    In combination with the theoretical ionization energy of the 3D state, the most precise ion- ization energy of the 21S0 state in 4He is determined to be 960 332 040.823(24) MHz, mainly limited by the theoretical uncertainty of the 3D states (20 kHz). Then, the deduced 21S0 and 23S1 Lamb shifts are 2806.864(24) MHz and 4058.130(24) MHz, which are 1.6 times better than previous determinations. The separation of 33D1-31D2 for 4He is 101 143.889(29) MHz, improving the precedent determination by a factor of 11.
    For the first time, the hyperfine structure of 31D2 state in 3He can be resolved. The measured hyperfine separation is 139.873(7) MHz. Furthermore, the isotope shift of 3He and 4He in the transition is 29.530 246(18) GHz. Therefore, the difference of the nuclear charge radius of 3He and 4He can be deduced to be 1.061(25) fm2. The separation of 33D1-31D2 for 3He is 101 058 203(56) kHz, improving the previous work by a factor of 90.

    要............................................. vi Abstract........................................... vii Acknowledgement ..................................... viii TableofContents ..................................... ix ListofFigures ....................................... xii ListofTables........................................ xvi 1 Introduction....................................... 1 1.1 EvolutionofLambshiftinHelium........................ 1 1.2 EnergyLevelofHeliuminlow-lyingstates ................... 4 1.3 Review the Determination of The Lamb Shift in 23S1 And 21S0 States . . . . . 6 1.3.1 The Lamb Shift of The 23S1 State .................... 6 1.3.2 The Lamb Shift of The 21S0 State .................... 9 1.4 Isotope Shift between 3He and 4He........................ 11 1.4.1 Difference of the Squares of the Nuclear Charge Radii of 3He and 4He . 12 1.5 Motivation..................................... 13 1.6 ThesisOutline................................... 15 2 LaserSystem ...................................... 17 2.1 ExternalCavityDiodelaser............................ 17 2.2 TheFrequencySuppressioninShort-termNoise. . . . . . . . . . . . . . . . . 22 2.2.1 Pound-Drever-Hall (PDH) Frequency Locking Technique . . . . . . . 22 2.2.2 FastModulationCircuit ......................... 24 2.2.3 TheLockingPerformance ........................ 26 2.3 TheReferenceFrequencyStandard........................ 28 2.3.1 IodineTransitionFrequencyNear504.5nm . . . . . . . . . . . . . . . 28 2.3.2 OpticalFrequencyComb(OFC)..................... 32 2.3.3 Consideration Between Two Types for Frequency Tuning . . . . . . . . 35 2.4 The Frequency Stability of The ECDL...................... 35 2.5 OpticalPowerAmplifier ............................. 38 2.5.1 TheFiberOutputPower......................... 39 3 Two-PhotonSpectrometerSetup ........................... 42 3.1 Two-photonSpectroscopy ............................ 42 3.2 PowerEnhancedCavity.............................. 44 3.2.1 TheCavityPowerStability........................ 48 3.3 VacuumSystem.................................. 49 3.3.1 TheClearanceinVacuumSystem .................... 51 3.4 MagneticIsolation ................................ 52 3.5 TheProcessoftheMeasurements ........................ 56 3.5.1 Preparationof21S0MetastableState................... 56 3.5.2 TheDetectionoftheFluorescenceLight. . . . . . . . . . . . . . . . . 57 3.5.3 TheDataAcquisitionoftheSpectrum.................. 58 3.5.4 DiscussionoftheResidualOffsetBackground . . . . . . . . . . . . . 59 4 TheTwo-Photon21S0-31D2Spectrumin4He..................... 62 4.1 The Measurements of the 21 S0 -31 D2 Two-photon Transition in 4 He . . . . . . . 62 4.2 TheFrequencyCorrections............................ 64 4.2.1 PowerShift(ACStarkEffect) ...................... 64 4.2.2 PressureShift............................... 67 4.2.3 TheOtherInvestigations......................... 68 4.3 The Linewidth of the 21S0-31D2 Two-photon Transition in 4He . . . . . . . . . 69 4.4 TheDeterminationoftheLambShifts ...................... 70 5 TheTwo-Photon21S0-31D2Spectrumin3He..................... 73 5.1 The Measurements of the 21 S0 -31 D2 F=5/2 and F=3/2 Two-photon Transition in3He....................................... 73 5.1.1 The Power and Pressure Corrections................... 77 5.1.2 The Observation of the Spectra Linewidth . . . . . . . . . . . . . . . . 78 5.2 The Determination of the Separation Between the F = 5/2 and 3/2 . . . . . . . 81 5.3 The Determination of the 21S0-31D2 F=5/2 and F=3/2 Two-photon Transitions Frequency..................................... 83 5.4 Comparison of Isotope Shift in 3He and 4He Between Theory and Experiment . 84 5.4.1 Determination of the difference of the squares of the Nuclear Charge Radius .................................. 84 6 Conclusion and Outlook ................................ 87 6.1 Conclusion .................................... 87 6.2 Outlook...................................... 88 6.2.1 ImprovingtheDeterminationoftheLambShift . . . . . . . . . . . . . 88 6.2.2 Production of the Ultracold Atoms in Metastable 21S0 State . . . . . . 89 Bibliography........................................ 91

    [1] W.E.LambJrandR.C.Retherford,“Finestructureofthehydrogenatombyamicrowave method,” Phys. Rev., vol. 72, no. 3, p. 241, 1947.
    [2] H. Araki, “Quantum-electrodynamical corrections to energy-levels of helium,” Prog. Theor. Phys., vol. 17, no. 5, p. 619, 1957.
    [3] J. Sucher, “Energy levels of the two-electron atom to order α3ry; ionization energy of helium,” Phys. Rev., vol. 109, no. 3, p. 1010, 1958.
    [4] E. E. Salpeter and H. A. Bethe, “A relativistic equation for bound-state problems,” Phy. Rev., vol. 84, no. 6, p. 1232, 1951.
    [5] S. Lewis, F. Pichanick, and V. Hughes, “Experiments on the 23P State of Helium. II. Mea- surements of the Zeeman Effect,” Phys. Rev. A, vol. 2, no. 1, p. 86, 1970.
    [6] A. Kponou, V. Hughes, C. Johnson, S. Lewis, and F. Pichanick, “Precise Measurement of the 23P0- 23P1 Fine-Structure Interval of Helium,” Phy. Rev. Lett., vol. 26, no. 26, p. 1613, 1971.
    [7] T. Finnegan, A. Denenstein, and D. Langenberg, “ac-Josephson-Effect Determination of e withSub—Part-Per-MillionAccuracy,”Phys.Rev.Lett.,vol.24,no.13,p.738,1970.
    h
    [8] M. Douglas and N. M. Kroll, “Quantum electrodynamical corrections to the fine structure of helium,” Ann. Phys., vol. 82, no. 1, p. 89, 1974.
    [9] Y. Accad, C. Pekeris, and B. Schiff, “S and P states of the helium isoelectronic sequence up to Z= 10,” Phy. Rev. A, vol. 4, no. 2, p. 516, 1971.
    [10] Y. Accad, C. Pekeris, and B. Schiff, “Two-electron S and P term values with smooth Z dependence,” Phy. Rev. A, vol. 11, no. 4, p. 1479, 1975.
    [11] W. C. Martin, “Energy levels of neutral helium (4He),” J. Phys. Chem. Ref. Data, vol. 2, no. 2, p. 257, 1973.
    [12] E. Giacobino and F. Biraben, “Energy level measurements and Lamb shift in helium,” J. Phys. B: Atom. Mole. Phys., vol. 15, no. 11, p. L385, 1982.
    [13] L. Hlousek, S. Lee, and W. Fairbank Jr, “Precision wavelength measurements and new experimental Lamb shifts in helium,” Phys. Rev. Lett., vol. 50, no. 5, p. 328, 1983.
    [14] D. Bloch, G. Trenec, and M. Leduc, “Isotope shift of the 23S1-23P transition in helium,” Journal of Physics B: Atomic and Molecular Physics, vol. 18, no. 6, p. 1093, 1985.
    [15] C. J. Sansonetti and W. Martin, “Accurate wave-number measurements for the 4He 1s2p- 1s3d transitions and comparisons of several term separations with theory,” Phys. Rev. A, vol. 29, no. 1, p. 159, 1984.
    [16] W. Martin, “Improved 4He 1snl ionization energy, energy levels, and Lamb shifts for 1sns and 1snp terms,” Phys. Rev. A, vol. 36, no. 8, p. 3575, 1987.
    [17] G. Drake, “Theoretical energies for the n= 1 and 2 states of the helium isoelectronic se- quence up to Z= 100,” Can. J. Phys., vol. 66, no. 7, p. 586, 1988.
    [18] P.C.Pastor,G.Giusfredi,P.D.Natale,G.Hagel,C.deMauro,andM.Inguscio,“Absolute Frequency Measurements of the 23S1 → 23P0,1,2 Atomic Helium Transitions around 1083 nm,” Phys. Rev. Lett., vol. 92, no. 2, p. 023001, 2004.
    [19] P.C.Pastor,G.Giusfredi,P.D.Natale,G.Hagel,C.deMauro,andM.Inguscio,“Absolute Frequency Measurements of the 23S1 → 23P0,1,2 Atomic Helium Transitions around 1083 nm,” Phys. Rev. Lett., vol. 97, no. 2, p. 139903(E), 2006.
    [20] F. Minardi, G. Bianchini, P. C. Pastor, G. Giusfredi, F. Pavone, and M. Inguscio, “Mea- surement of the Helium 23P0 - 23P1 Fine Structure Interval,” Phys. Rev. Lett., vol. 82, no. 6, p. 1112, 1999.
    [21] J. Castillega, D. Livingston, A. Sanders, and D. Shiner, “Precise Measurement of the J= 1 to J= 2 Fine Structure Interval in the 23P State of Helium,” Phys. Rev. Lett., vol. 84, no. 19, p. 4321, 2000.
    [22] C. Storry, M. George, and E. Hessels, “Precision Microwave Measurement of the 23P1 - 23P2 Interval in Atomic Helium,” Phys. Rev. Lett., vol. 84, no. 15, p. 3274, 2000.
    [23] M.George,L.Lombardi,andE.Hessels,“PrecisionMicrowaveMeasurementofthe23P1 - 23P0 Interval in Atomic Helium: A Determination of the Fine-Structure Constant,” Phys. Rev. Lett., vol. 87, no. 17, p. 173002, 2001.
    [24] M. D. C, W. Qixue, and D. G. WF, “Energy levels for the stable isotopes of atomic helium (4He I and 3He I),” Can. J. Phys., vol. 84, no. 2, p. 83, 2006.
    [25] G.W.DrakeandZ.-C.Yan,“EnergiesandrelativisticcorrectionsfortheRydbergstatesof helium: Variational results and asymptotic analysis,” Phys. Rev. A, vol. 46, no. 5, p. 2378, 1992.
    [26] G. W. Drake, “Energies and asymptotic analysis for helium Rydberg states,” Adv. At. Mol. Opt. Phys, vol. 31, p. 1, 1993.
    [27] G. Drake, “Quantum defect theory and analysis of high-precision helium term energies,” Adv. At. Mol. Opt. Phys, vol. 32, p. 93, 1994.
    [28] G. Drake and W. C. Martin, “Ionization energies and quantum electrodynamic effects in the lower 1sns and 1snp levels of neutral helium (4he i),” Can. j. phys., vol. 76, no. 9, p. 679, 1998.
    [29] K. Pachucki, “Improved result for helium 23S1 ionization energy,” Phys. Rev. Lett., vol. 84, no. 20, p. 4561, 2000.
    [30] P. Krzysztof, “The complete mα6 contribution to the helium 23PJ energy,” J. Phys. B: Adv. At. Mol. Opt. Phys, vol. 35, no. 14, p. 3087, 2002.
    [31] G. Drake, “Helium. Relativity and QED,” Nuc. Phys. A, vol. 737, p. 25, 2004.
    [32] K. Pachucki, V. Patkóš, and V. Yerokhin, “Testing fundamental interactions on the helium atom,” Phys. Rev. A, vol. 95, no. 6, p. 062510, 2017.
    [33] P. Juncar, H. Berry, R. Damaschini, and H. Duong, “Energies of some triplet levels in 4He i,” . Phys. B: At., Mol. Phys., vol. 16, no. 3, p. 381, 1983.
    [34] C. J. Sansonetti, J. Gillaspy, and C. Cromer, “Precise experimental test of calculated two- electron Lamb shifts in helium,” Phys. Rev. Lett., vol. 65, no. 20, p. 2539, 1990.
    [35] W. Lichten, D. Shiner, and Z.-X. Zhou, “Measurement of the Lamb shifts in singlet levels of atomic helium,” Phys. Rev. A, vol. 43, no. 3, p. 1663, 1991.
    [36] C.J.SansonettiandJ.D.Gillaspy,“Absoluteionizationenergyofthe21Slevelofhelium,” Phys. Rev. A, vol. 45, no. 1, p. R1, 1992.
    [37] D. Shiner, R. Dixson, and P. Zhao, “Precise measurement of the lamb shift and fine struc- ture of the 2s-2p transition in triplet helium,” Phys. rev. lett., vol. 72, no. 12, p. 1802, 1994.
    [38] F. Pavone, F. Marin, P. De Natale, M. Inguscio, and F. Biraben, “First pure frequency measurement of an optical transition in helium: lamb shift of the 23S1 metastable level,” Phys. rev. lett., vol. 73, no. 1, p. 42, 1994.
    [39] K. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Lamb shift measurement in the 11s ground state of helium,” Phys. Rev. A, vol. 55, no. 3, p. 1866, 1997.
    [40] C. Dorrer, F. Nez, B. De Beauvoir, L. Julien, and F. Biraben, “Accurate Measurement of the 21S3-33D1 Two-Photon Transition Frequency in Helium: New Determination of the 21S3 Lamb Shift,” Phys. Rev. Lett., vol. 78, no. 19, p. 3658, 1997.
    [41] S. D. Bergeson, A. Balakrishnan, K. Baldwin, T. B. Lucatorto, J. Marangos, T. McIlrath, T. R. O’Brian, S. Rolston, C. J. Sansonetti, J. We et al., “Measurement of the He Ground State Lamb Shift via the Two-Photon 11S - 21S Transition,” Phys. rev. lett., vol. 80, no. 16, p. 3475, 1998.
    [42] R. Van Rooij, J. S. Borbely, J. Simonet, M. Hoogerland, K. Eikema, R. Rozendaal, and W. Vassen, “Frequency metrology in quantum degenerate helium: Direct measurement of the 23S1→ 21S0 transition,” Science, vol. 333, no. 6039, p. 196, 2011.
    [43] P.-L. Luo, J.-L. Peng, S.-T. Shy, and L.-B. Wang, “Precision Frequency Metrology of He- lium 21S0 → 21P1 Transition,” Phys. Rev. Lett., vol. 111, no. 1, p. 013002, 2013.
    [44] P.-L. Luo, J.-L. Peng, S.-T. Shy, and L.-B. Wang, “Precision Frequency Metrology of He- lium 21S0 → 21P1 Transition,” Phys. Rev. Lett., vol. 111, no. 1, p. 0179901(E), 2013.
    [45] R.NotermansandW.Vassen,“High-PrecisionSpectroscopyoftheForbidden21S3→21P1 Transition in Quantum Degenerate Metastable Helium,” Phys. Rev. Lett., vol. 112, no. 25, p. 253002, 2014.
    [46] X. Zheng, Y. R. Sun, J.-J. Chen, W. Jiang, K. Pachucki, and S.-M. Hu, “Measurement of the Frequency of the 23S − 23P Transition of 4He,” Phys. Rev. Lett., vol. 119, p. 263002, 2017.
    [47] J. W. Rohlf, Modern Physics from α to Z0, p. 664, 1994.
    [48] X.Zheng,Y.R.Sun,J.-J.Chen,W.Jiang,K.Pachucki,andS.-M.Hu,“LaserSpectroscopy of the Fine-Structure Splitting in the 2PJ Levels of 4He,” Phys. Rev. Lett., vol. 118, no. 6, p. 063001, 2017.
    [49] P.-L. Luo, J.-L. Peng, J. Hu, Y. Feng, L.-B. Wang, and J.-T. Shy, “Precision frequency measurements of 3,4He, 23P → 33D transitions at 588 nm,” Phys. Rev. A, vol. 94, no. 6, p. 062507, 2016.
    [50] K.Pachucki,P.Vojtch,andV.A.Y.and,“Higher-orderrecoilcorrectionsforsingletstates of the helium atom,” Phys. Rev. A, vol. 95, no. 1, p. 012508, 2017.
    [51] A. Yelkhovsky, “QED corrections to singlet levels of the helium atom: A complete set of effective operators to m α 6,” Phys. Rev. A, vol. 64, no. 6, p. 062104, 2001.
    [52] P.-L. Luo, C.-C. Kuo, C.-C. Lee, and J.-T. Shy, “Frequency stabilization of a single- frequency volume Bragg grating-based short-cavity Tm: Ho: YLF laser to a CO2 line at 2.06 μm,” Appl. Phys. B, vol. 109, no. 2, p. 327, 2012.
    [53] P.-L. Luo, Y.-C. Guan, J.-L. Peng, S.-T. Shy, and L.-B. Wang, “Measurement of the
    21P1 → 31D2 transition frequency in 4He,” Phys. Rev. A, vol. 88, no. 5, p. 054501, 2013.
    [54] V.A.YerokhinandK.Pachucki,“Theoreticalenergiesoflow-lyingstatesoflighthelium- like ions,” Phys. Rev. A, vol. 81, no. 2, p. 022507, 2010.
    [55] L.-B.Wang,P.Mueller,K.Bailey,G.Drake,J.Greene,D.Henderson,R.Holt,R.Janssens, C. Jiang, Z.-T. Lu et al., “Laser Spectroscopic Determination of the 6He Nuclear Charge Radius,” Phys. Rev. Lett., vol. 93, no. 14, p. 142501, 2004.
    [56] P. C. Pastor, L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, V. Yerokhin, and K. Pachucki, “Frequency metrology of helium around 1083 nm and determination of the nuclear charge radius,” Phys. Rev. Lett., vol. 108, no. 14, p. 143001, 2012.
    [57] P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the fun- damental physical constants: 2010 a,” J. Phys. Chem. Ref. Data, vol. 84, no. 4, p. 1527, 2012.
    [58] G. W. Drake, W. Nörtershäuser, and Z.-C. Yan, “Isotope shifts and nuclear radius mea- surements for helium and lithium,” Can. J. Phys., vol. 83, no. 4, pp. 311–325, 2005.
    [59] S. Rosner and F. Pipkin, “Hyperfine Structure of the 21S3 State of 3He,” Phys. Rev. A, vol. 1, no. 3, p. 571, 1970.
    [60] H. Schuessler, E. Fortson, and H. Dehmelt, “Hyperfine Structure of the Ground State of 3He+ by the Ion-Storage Exchange-Collision Technique,” Phys. Rev., vol. 187, no. 1, p. 5, 1969.
    [61] D. Shiner, R. Dixson, and V. Vedantham, “Three-Nucleon Charge Radius: A Precise Laser Determination Using 3He,” Phys. Rev. Lett., vol. 74, no. 18, p. 3553, 1995.
    [62] I. Sick, “Zemach moments of 3He and 4He,” Phys. Rev. C, vol. 90, no. 6, p. 064002, 2014.
    [63] G. W. Drake and Z.-C. Yan, “High-precision spectroscopy as a test of quantum electrody-
    namics in light atomic systems,” Can. J. Phys., vol. 86, no. 1, p. 45, 2008.
    [64] P.-P.Zhang,Z.-X.Zhong,Z.-C.Yan,andT.-Y.Shi,“Precisioncalculationoffinestructure in helium and Li+,” Chin. Phys. B, vol. 24, no. 3, 2015.
    [65] K. Pachucki and V. Yerokhin, “Theory of the helium isotope shift,” J. Phys. Chem. Ref. Data, vol. 44, no. 3, p. 031206, 2015.
    [66] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev., vol. 112, no. 6, p. 1940, 1958.
    [67] C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quant. Electron., vol. 18, no. 2, p. 259, 1982.
    [68] M.FlemingandA.Mooradian,“Spectralcharacteristicsofexternal-cavitycontrolledsemi- conductor lasers,” IEEE J. of Quantum Electron., vol. 17, no. 1, p. 44, 1981.
    [69] S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. opt., vol. 48, no. 36, p. 6961, 2009.
    [70] E. C. Cook, P. J. Martin, T. L. Brown-Heft, J. C. Garman, and D. A. Steck, “High passive- stability diode-laser design for use in atomic-physics experiments,” Rev. Sci. Instrum., vol. 83, no. 4, p. 043101, 2012.
    [71] R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B, vol. 31, no. 2, p. 97, 1983.
    [72] T. Quinn, “Practical realization of the definition of the metre,” metrologia, vol. 36, no. 3, p. 211, 1999.
    [73] X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Optics Communications, vol. 266, no. 2, p. 609, 2006.
    [74] J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. Nicholson, “Highly stable, frequency- controlled mode-locked erbium fiber laser comb,” Appl. Phys. B, vol. 86, no. 1, p. 49, 2007.
    [75] C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem et al., “Improved measurement of the hydrogen 1S -2S transition frequency,” Phys. Rev. Lett., vol. 107, no. 20, p. 203001, 2011.
    [76] P. Liao and J. Bjorkholm, “Direct observation of atomic energy level shifts in two-photon absorption,” Phys. Rev. Lett., vol. 34, no. 1, p. 1, 1975.
    [77] M. Henry, “Pressure shift and broadening of spectral lines,” Phys. Rev., vol. 40, no. 3, p. 387, 1932.
    [78] A. Wedding, A. Mikosza, and J. Williams, “Lifetimes of the 31,3P and 31,3D states of helium,” J. Electron. Spectrosc. Relat. Phenom., vol. 52, p. 689, 1990.
    [79] J. Derouard, M. Lombardi, and R. Jost, “Forbidden singlet-triplet anticrossings in 3He: precise determination of n1D-n3D (n= 3-6) intervals,” J. Phys. (Paris), vol. 41, no. 8, p. 819, 1980.
    [80] C. E. Theodosiou, “Lifetimes of singly excited states in He I,” Phys. Rev. A, vol. 30, no. 6, p. 2910, 1984.
    [81] C.Lin,W.Johnson,andA.Dalgarno,“Radiativedecaysofthen=2statesofHe-likeions,” Phys. Rev. A, vol. 15, no. 1, p. 154, 1977.
    [82] E. Eyler, D. Chieda, M. C. Stowe, M. J. Thorpe, T. Schibli, and J. Ye, “Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy,” Eur. Phys. J. D, vol. 48, no. 1, p. 43, 2008.

    QR CODE