研究生: |
戴啟夫 Dai, Chi-Fu |
---|---|
論文名稱: |
以分子動力學模擬奈米噴流技術 Molecular Dynamics Simulation of Nanojet Process |
指導教授: |
張榮語
Chang, Rong-Yeu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 144 |
中文關鍵詞: | 噴墨技術 、分子動力學模擬 、奈米噴流 |
外文關鍵詞: | Inkjet Technology, Mlecular Dnamics Simulation, Nanojet |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微奈米元件隨著奈米製造技術而蓬勃發展。然而,開發過程中
將遭遇到實驗和傳統連續力學方法不可分析或預測的問題。本研究
推廣流變學分析技術之應用範圍至奈米等級,選擇分子動力學模擬
作為基本理論架構,以奈米噴墨加工系統作為載具進行奈米製程的
探討。初步,對高分子材料的黏彈及流變材料性質做驗證,包含:
模擬高分子模擬玻璃轉化現象,分析奈米高分子剪切系統的流變性
質及黏彈特性。並應用平行化技術以加速程式運算的效率。之後將
研究方法推廣至奈米噴流系統,並討論不同推擠速度、推擠週期及
表面作用力對噴流過程的影響。本研究將對奈米尺度的加工提供進
一步的了解。未來可以藉此深入了解奈米流場下流動的特性,以期
將對分子動力學理論分析模擬的經驗擴展到其他奈米流變學行為,
掌握奈米精密加工製程關鍵技術。
Recently, with the progress of nanomachining, nanosized devices have been developed. In addition to nano-scale experimental investigation, molecular dynamic simulation is a powerful tool to study nano-scale processes under different operating conditions. Although continuum mechanics is well accepted in describing the dynamics of
process at the macro-scale, continuum modelling is not applicable when nano-scale or molecular-level physics becomes dominant. This study develops a simulation method to study the jet process at nano-scale. The elementary works of this study are as following. First, we analyze the
conformational dynamics and entanglement phenomenon of polymer chains during glass transition. Second, the rheology of polymer thin film under various shear conditions is simulated. Furthermore, the application
of parallel algorithm is included in this simulation method. Based on the development of the simulation method in nano-scale, we will analyze the process of nanojet with various compressing velocities, pushing periods and solid-liquid wettability surfaces. Results that illustrate various
features are presented to aid in the comprehension of the nanojet processes.
[1] 林鴻明, "奈米材料未來的發展趨勢," 科技發展政策報導SR9109, p. 648, 2002.
[2] M. Gad-el-Hak, "The MEMS Handbook Part I: Background and Fundamentals," University of Notre Dame, CRC Press LLC, 2002.
[3] H. P. Le, "Progress and trends in inkjet printing technology," The Journal of Imaging Science and Technology, vol. 42, p. 49, 1998.
[4] S. Hirata, Y. Ishii, H. Matoba, and T. Inui, "An Ink-Jet Head Using Diaphragm Microactuator," in Proc. 9th IEEE Micro Electro Mechanical Systems Workshop, San Diego, CA, p. 418, 1996.
[5] R. R. Allen, J. D. Meyer, and W. R. Knight, "Thermodynamics and Hydrodynamics of Thermal Ink Jets," Hewlett-Packard, p. 21, 1985.
[6] D. J. Hayes, W. R. Cox, and M. E. Grove, "Low-Cost Display Assembly and Interconnect Using Ink-Jet Printing Technology," MicroFab Technologies, Inc., Display Works ’99, p. 1, 1999.
[7] F.-G. Tseng, "The MEMS Handbook Part III: Applications of MEMS, Microdroplet Generators," CRC Press LLC, 2002.
[8] K. Asano, Y. Funayama, K. Yatsuzuka, and Y. Higashiyama, "Spherical Particle Sorting by Using Droplet Deflection Technology," J. Electrostatics, vol. 35, p. 3, 1995.
[9] S. Fuller and J. Jacobson, "Ink Jet Fabricated Nanoparticle MEMS," in Proc. IEEE MEMS, Miyazaki, Japan, p. 138, 2000.
[10] F.-G. Tseng, "Droplet Impinging Micro Cooling Arrays," proposal for NSC project, 2001.
[11] K. Yamaguchi, K. Sakai, T. Ymanaka, and T. Hirayama, "Generation of Three-Dimensional Micro Structure Using Metal Jet," Precision Eng. , vol. 24, p. 2, 2000.
[12] P. Cooley, D. Wallace, and B. Antohe, "Applications of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems," Proceedings, SPIE Conference on Microfluidics and BioMEMS, p. 1, 2001.
[13] D. J. Hayes, W. R. Cox, and D. B. Wallace, "Printing System for MEMS Packaging," Proceedings, SPIE Conference on Micromachining and Microfabrication, p. 1, 2001.
[14] W. R. Cox, T. Chen, D. J. Hayes, and M. E. Grove, "Low-cost fiber collimation for MOEMS switches by ink-jet printing," Proceedings, SPIE Conference on MOEMS and Miniaturize Systems, p. 1, 2001.
[15] J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport properties. IV. The equation of hydrodynamics," J.Chem.Phys, vol. 18, p. 817, 1950.
[16] B. J. Alder and T. E. Wainwright, "Phase Transition for a Hard Sphere System," J. Chem. Phys., vol. 27, p. 1208, 1957.
[17] B. J. Alder and T. E. Wainwright, "Studies in Molecular Dynamics. I. General Method," J. Chem. Phys., vol. 31, p. 459, 1959.
[18] A. Rahman, "Correlations in the Motion of Atoms in Liquid Argon," Physical Review, vol. 136, p. 405, 1964.
[19] A. Rahman and F. H. Stillinger, "Improved simulation of liquid water by molecular dynamics," J. Chem. Phys., vol. 60, p. 1545, 1974.
[20] J. M. Haile, "Molecular Dynamics Simulation: Elementary Methods," Wiley Published, 1997.
[21] M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids," Oxford University Press, 1987.
[22] G. Ciccotti and E. W.G. Hoover, "Molecular Dynamics Simulation of Statistical Mechanical System," North Holland, Amsterdam, 1986.
[23] D. Rigby and R. J. Roe, "Molecular-Dynamics Simulation of Polymer Liquid and Glass .1. Glass-Transition," J. Chem. Phys., vol. 87, p. 7285, 1987.
[24] D. Rigby and R. J. Roe, "Molecular-Dynamics Simulation of Polymer Liquid and Glass .2. Short-Range Order and Orientation Correlation," J. Chem. Phys., vol. 89, p. 5280, 1988.
[25] D. Rigby and R. J. Roe, "Molecular-Dynamics Simulation of Polymer Liquid and Glass .3. Chain Conformation," Macromolecules, vol. 22, p. 2259, 1989.
[26] K. Esselink, P. A. J. Hibers, and B.W. H van Beest, “Molecular dynamics study of nucleation and melting of n-alkanes”, J. Chem. Phys., Vol. 101, p. 9033, 1990.
[27] T. A. Kavassalis, and R. P. Sundararajan, “A molecular-dynamics study of polyethylene crystallization”, Macromolecules, Vol. 26, p. 4144, 1993.
[28] M. Imai, K. Mori, and T. Kanaya, “Structural Formation of Poly(ethylene terephthalate) during the Induction Period of Crystallization. 3. Evolution of Density Fluctuations to Lamellar Crystal”, Macromolecules, Vol. 27, p. 7103, 1994.
[29] S. Fujiwara and T. Sato, “Molecular dynamics simulations of structural formation of a single polymer chain:Bond-orientational order and conformational defects”, J. Chem. Phys., Vol. 107, p. 8, 1997.
[30] A. Koyama et al., “Molecular dynamics simulation of polymer crystallization from an oriented amorphous state”, Physical Review E, Vol. 65, p. 050801-1, 2000.
[31] J. Koplik, J. R. Banavar, and J. F. Willemsen, “Molecular Dynamics of Poiseuile Flow and Moving Contact Lines”, Physical Review Letters, Vol.60, p.1282, 1988.
[32] J. Koplik, J. R. Banavar, and J. F. Willemsen, “Molecular Dynamics of Fluid Flow at Solid Surface”, Phys. Fluids A, Vol. 1, p. 781, 1989.
[33] P. A. Thompson, and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces” Nature, Vol. 389, p.360, 1997.
[34] A. Jabbarzadeh, J.D. Atkinson, and R.I. Tanner, “Nanorheology of Molecularly Thin Films of n-hexadecane in Couette Shear Flow By Molecular Dynamcis Simulation”, J. Non-Newtonian Fluid Mech., Vol. 77, p. 53, 1998.
[35] A. Jabbarzadeh and J. D. Atkinson, and R. I. Tanner, “Wall slip in the molecular dynamics simulation of thin films of hexadecane”, Journal of Chemical Physics, vol. 110, p.2612, 1999.
[36] J. D. Moore, S. T. Cui, H. D. Cochran, and P. T. Cummings “A molecular dynamics study of a short chain polyethylene melt I. Steady state shear”, J. Non-Newtonian Fluid Mech., Vol.93, p.83, 2000.
[37] J.D. Moore, S.T. Cui, H.D. Cochran and P.T. Cummings, “A molecular dynamics study of a short chain polyethylene melt II. Transient response upon onset shear”, J. Non-Newtonian Fluid Mech., Vol. 93, p.101, 2000.
[38] A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, “Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls”, Physical Review E, Vol. 61, p. 690, 2000.
[39] A. Jabbarzadeh, J.D. Atkinson, and R.I. Tanner, “The Effect of Branching on Slip and Rheological Properties of Lubricants in Molecular Dynamics Simulation of Couette Shear Flow”, Tribology International, Vol. 35, p. 35, 2002.
[40] H.Schreiber, O, Steinhauser, P. Schuster, "Parallel molecular dynamics of biomolecules", Parallel computing, vol.18(5), p.557, 1992.
[41] Y. H. Wang, R. Das, F.H. Saltz, M. Hadošcek, B.R. Brooks, "Parallelizing molecular dynamics programs for distributed-memory machines", IEEE comput. Sci. and Engrg. vol.2, p.18, 1995.
[42] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", Journal of Computational Physics, vol.117, p.1, 1995.
[43] V.E. Taylor, R.L. Stevens, K.E. Arnold, "Parallel Molecualr Dynamics:Implications for Massively Parallel Machines", Journal of Parallel and Distributed Computing, vol.45, p.166, 1997.
[44] R. Murty, D. Okunbor, "Efficient parallel algorithms for molecular dynamics simulation", Parallel Computing, vol.25, p.217, 1999.
[45] J. W. Shu, B. Wang, M. Chen, J. Z. Wang, W. M. Zheng, " Optimization techniques for parallel force-decomposition algorithm in molecular dynamic simulations", Computer Physics Communications, vol.154, p.121, 2003.
[46] S.G. Srinivasan, I. Ashok, Hannes Jonsson, Gretchen Kalonji, John Zahorjan, "Dynamic-domain-decomposition parallel molecular dynamics", Computer Physics Communications. vol.102, p.44, 1997.
[47] R. Hayashi, S. horiguchi, "Efficiency of dynamic Load Balancing Based on Permanent Cells for Parallel Molecular Dynamics Simulation", 14th International Parallel and Distributed Processing Symposium, p.85, 2000.
[48] D. Brown, H. Minoux, Bernard Maigret, "A domain decomposition parallel processing algorithm for molecular dynamics simulations of system s of arbitrary connectivity", Computer Physics Communications, vol.103, p.170, 1997.
[49] S. T. O’Connell, and P. A. Thompson, “Molecular Dynamics-Continuum Hybrid Computations:A Tool for Studying Complex Fluid Flows”, Physical Review E , Vol. 52, p. 5792, 1995.
[50] F. F. Abraham, J. Q. Broughton, N. Bernstein, and E. Kaxiras, “Spanning the Length Scales in Dynamic Simulation”, Computers in Physics, Vol. 12, p. 538, 1998.
[51] G. Wagner, E. Flekkøy, J. Feder, and Torstein Jøssang, “Coupling molecular dynamics and continuum dynamics”, Computer Physics Communications, Vol. 147, p. 670, 2002.
[52] S. H. Lamb, Hydrodynamics, 6th ed., Dover Publications, Inc., New York, p. 471, 1945.
[53] L. Rayleigh, “On the Instability of a Cylinder of Viscous Liquid under Capillary Force”, Philosophical Magazine, Vol. 34, p. 145, 1892.
[54] H. C. Lee, "Drop formation in a liquid jet", IBM Journal of Research and Development, July, p.364, 1974.
[55] A. Bruce, “Dependence of Ink Jet Dynamics on Fluid Characteristics”, IBM Journal of Research and Development, Vol. 20, p. 258, 1976.
[56] W.T. Pimbley, H.C. Lee, "Satellite droplet formation in a liquid jet", IBM J. Res. Dev., Vol. 21, p.21, 1977.
[57] J. Eggers, and T. F. Dupont, "Drop formation in a one-dimensional approximation of the Navier-Stokes equation", J. Fluid Mech., Vol. 262, p.205, 1994.
[58] Asai, “Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer”, Journal of Fluids Engineering, Vol. 114, p. 638, 1992.
[59] J. Voigt, B. Reinker, I.W. Rangelow, "NANOJET:Nanostructuring via a downstream plasmajet", J. Vac. Sci. Technol. B, Vol. 17, p.2764, 1999.
[60] J. Voigt, F. Shi, P. Hudek, I.W. Rangelow, "Progress on nanostructuring with Nanojet", J. Vac. Sci. Technol. B, Vol. 18, pp.3525-3529, 2000.
[61] I.W. Rangelow, J. Voigt, "”NANOJET”:Tool for the nanofabrication", J. Vac. Sci. Technol. B, Vol. 19, p.2723, 2001.
[62] J. Voigt, F. Shi, K. Edinger, P. Güthner, I.W. Rangelow, "Nanofabrication with scanning nanonozzle ‘Nanojet’", Microelectronic Engineering, Vol. 57-58, p.1035, 2001.
[63] http://www.tcd.ie/Physics/Nanotechnology/nanojet.html
[64] Nisarga Naik et al, "Microfluidics for generation and characterization of liquid and gaseous micro- and nanojets," Sensors and Actuators A vol. 134, p. 119, 2007.
[65] J. Koplik, J. R. Banavar, "Molecular dynamics of interface rupture", Phys. Fluids A, Vol. 5, p.521, 1993.
[66] S. Kawano, "Molecular dynamics of rupture phenomena in a liquid thread", Phys. Rev. E, Vol. 58, p.4468, 1998.
[67] L. V. Zhigilei, P. B. S. Kodali, and B. J. Garrison, “Molecular Dynamics Model for Laser Ablation and Desorption of Organic Solids” ,J. Phys. Chem. B, vol. 101, p. 2028, 1997.
[68] L. V. Zhigilei, P. B. S. Kodali, and B. J. Garrison, “A Microscopic View of Laser Ablation”, J. Phys. Chem. B, Vol. 102, p. 2845, 1998.
[69] M. Goto, L. V. Zhigilei, J. Hobley, M. Kishimoto, B. J. Garrison, and H. Fukumura, “Laser expulsion of an organic molecular nanojet from a spatially confined domain”, J. Appl. Phys., Vol. 90, No. 9, p. 4755, 2001.
[70] Y. Dou, N. Winograd, B. J. Garrison, and L. V. Zhigilei, “Substrate-Assisted Laser-Initiated Ejection of Proteins Embedded in Water Films” J. Phys. Chem. B, Vol. 107, p. 2362, 2003.
[71] M. Goto, L.V. Zhigilei, J. Hobley, M. Kishimoto, B.J. Garrison, and H. Fukumura, "Laser expulsion of an organic molecular nanojet from a spatially confined domain", J. Appl. Phys., Vol. 90, p.4755, 2001.
[72] M. Moseler and U. Landman, "Formation, stability, and breakup of nanojets", Science, Vol. 289, p.1165, 2000.
[73] M. Goto, L.V. Zhigilei, J. Hobley, M. Kishimoto, B.J. Garrison and H. Fukumura, "Laser expulsion of an organic molecular nanojet from a spatially confined domain", J. Appl. Phys., Vol. 90, p.4755, 2001.
[74] J. Eggers. “Dynamics of liquid nanojets “, Phys. Rev. Lett., Vol. 89, p. 084502, 2002.
[75] Alexis Casner and Jean-Pierre Delville , “Laser-Induced Hydrodynamic Instability of Fluid Interfaces”, Phys. Rev. Lett., Vol. 90, p. 144503, 2003.
[76] Te-Hua Fang, Win-Jin Chang, Shi-Cheng Liao, Simulated nanojet ejection process by spreading droplet on a solid surface, J. of Physics-Condensed Matter, Vol.15, p.8263, 2003.
[77] H Shin, M Oschwald, M. M. Micci, and W. Yoon, "Influence of thermodynamic state on nanojet break-up," Nanotechnology, vol. 16, p. 2838, 2005.
[78] Yong Seok Choi, Sung Jin Kim, and M.-U. Kim, "Molecular dynamics of unstable motions and capillary instability in liquid nanojets," Phys. Rev. E, vol. 73, p. 016309, 2006.
[79] I. Marginean, V. Znamenskiy, and A. Vertes, "Charge reduction in electrosprays: Slender nanojets as intermediates," J. Phys. Chem. B, vol. 110, p. 6397, 2006.
[80] Sohail Murad and I. K. Puri, "Nanoscale Jet Collision and Mixing Dynamics," Nano Letters, vol. 7, p. 707, 2007.
[81] Wei Kang and U. Landman, "Universality Crossover of the Pinch-Off Shape Profiles of Collapsing Liquid Nanobridges in Vacuum and Gaseous Environments," Phys. Rev. E Lett., vol. 98, p. 064504, 2007.
[82] Anupam Tiwari and J. Abraham, "Dissipative particle dynamics simulations of liquid nanojet breakup," Microfluidics and Nanofluidics, vol. 4, p. 227, 2008.
[83] Wei Kang, Uzi Landman, and A. Glezer, "Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle," App. Phys. Lett., vol. 93, p. 123116, 2008.
[84] Hyun-Ho Shin, Donguk Suh, and W.-S. Yoon, "Non-equilibrium molecular dynamics of nanojet injection in a high pressure environment " Microfluidics and Nanofluidics vol. 29, p. 1613, 2008.
[85] I. Hanasaki, T. Yonebayashi, and S. Kawano, "Molecular dynamics of a water jet from a carbon nanotube," Phys. Rev. E, vol. 79, p. 046307, 2009.
[86] C. L. Yeh, "Molecular Dynamics Simulation for the Atomization Process of a Nanojet," Cmes-Comp Model. Eng., vol. 39, p. 179, 2009.
[87] B. Wolff, W.G. Rudd, "Tabulated potentials in molecular dynamics simulations", Comput. Phys. Commun., Volume 120, p.20, 1999.
[88] S. Toxvaerd, "Molecular dynamics calculation of the equation of state of liquid propane," J. of Chem. Phy., vol. 91, p. 3716, 1989.
[89] W. L. Jorgensen, J. D. Madura, and C. J. Swenson, "Optimized Intermolecular Potential Functions for Liquid Hydrocarbons," J. Am. Chem. Soc., vol. 106, p. 6638, 1984.
[90] G. Nagayama, T. Tsuruta, and P. Cheng, "Molecular dynamics simulation on bubble formation in a nanochannel," Int. J. Heat Mass Tran., vol. 49, p. 4437, 2006.