研究生: |
陳又菁 You-Jing Chen |
---|---|
論文名稱: |
ㄧ維光子晶體結構之數值分析 Numerical Analysis of One-Dimensional Photonic Bandgap Structures |
指導教授: |
楊士禮
Sidney S. Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 一維光子晶體 、週期性波導 、微擾法 、布拉赫波 、幅角原理法 、色散方程式 |
外文關鍵詞: | one-dimensional photonic crystals, periodic waveguide, perturbation method, Floquet-Bloch Wave, Argument principle method, dispersion equation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討電磁波在一維光子晶體結構中的數值分析方法。我們採用Floquet-Bloch(FB) Wave Approximation假設在週期性結構內的電場形式,FB Wave在結構內滿足Maxwell’s equation在數學上表示為一二階非齊次的耦合微分方程,我們結合第一階微擾法(first-order perturbation method)對Mawell’s equation進行求解。在求解過程中,我們不使用傳統的大量數值迭代,將推導出可描述在結構內的電場收斂解析解,進而分析電場輻射能量與不同結構幾何的關係。
此外在透過多值的色散方程式求解結構內允許的模態(複數零根)時,我們使用保形映射轉換色散方程式為單值函數,而後以APM(argument principle method)尋找所有的導模(guided mode)或溢漏模(leaky mode)解,APM不需透過迭代運算可有效提升運算上的效率且能成功求解出所有零根。
In this thesis, we concentrate on the perturbation method as the numerical model in the analysis of electromagnetic fields one-dimensional photonic band gap(PBG) structures. Approximating that the electric fields is in the form of scalar Floquet-Bloch waves, the Maxwell’s equation in the corrugated region is a second-order inhomogeneous coupled differential equation and can be analytically solved by the first-order perturbation method that involves usually massive numerical iterative calculations. We suggest an approximated analytic solution for the electric field in the corrugated region instead of the numerical iterative results. After that, the radiated power with various geometrical parameters are presented.
Also, we study the implementation of mode determination inside one-dimensional PBG. The allowed modes, including guided modes and leaky modes, are obtained by finding zeros of the complex multi-valued dispersion equation. With conformal mapping, the four-valued dispersion equation is transformed into a single-valued equation with another new variable. We solve this single-valued equation by applying argument principle method(APM). APM is a rigorous mathematical technique based on the complex number theory but not merely numerical iterative process. It is capable of finding all the zeros of any analytic function in the complex plane. With APM algorithms, the roots-finding of dispersion equation with PBG structure is more effective and accurate.
[1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[2] S. John, Phys. Rev. Lett. 58, 2468 (1987).
[3] H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits. New York: McGraw-Hill, 1985, ch.4.
[4] S. Noda, K. Kojima, K.Kyuma, “Surface emitting multiple quantum well distributed feedback laser with a broad-area grating coupler,” Electron. Lett., vol 24, pp.277-278, 1988.
[5] K. Kojima,M. Kameya, S. Noda, and K.Kyuma, “High efficiency surface emitting distributed Bragg reflector laser array,” Electron. Lett., vol 24, pp.283, 1988.
[6] H. Kogelnik and C. V. Shank, “Coupled wave theory of stimulated emission in a periodic strucutre,” J. Appl. Phys., vol. 43, pp. 2327–2335, 1972.
[7] W. P. Huang, J. Hong, and Z. M. Mao, “Improved couple-mode formulation based on composite modes for parallel grating-assisted codirectional couplers,” IEEE J. Quantum Electron., vol. 29, pp. 2805–2812, Nov. 1993.
[8] M. G. Moharam and T. K. Gaylord, ”Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am., Vol. 71, pp.811-818, July 1981.
[9] Ni Y. Chang and Chung J. Kuo, “Algorithm based on rigorous coupled-wave analysis for
diffractive optical element design ,” J. Opt. Soc. Am. A, Vol. 18, pp.2491-2501, Oct. 2001.
[10] K. Sakoda, “Optical transmittance of a two dimensional triangular photonic lattice,” Phys. Rev. B, vol. 51, pp. 4672–4675, Feb. 1995.
[11] K. Sakoda, “Transmittance and Bragg reflectivity of two dimensional photonic lattices,” Phys. Rev. B, pp. 8992–9002, Sept. 1995.
[12] Translight, a TMM-based software for PBG structures simulation, free download [Online]. Available: http://www.areynolds.com/.
[13] P. Bell, J. B. Pendry, L. Martin Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comp. Phys. Commun., vol. 85, pp. 306–322, 1995.
[14] J. B. Pendry, “Calculating photonic band structure,” J. Phys. Condensed Matter, vol. 8, no. 9, pp. 1085–1108, 1996.
[15] ONYX, a program based on the FDTD method [Online]. Available: http://www.sst.ph.ic.ac.uk/photonics/ONYX/orderN.html.
[16] P. Kelly and M. Picket-May, “Propagation characteristics for an one-dimensional grounded finite height finite length electromagnetic crystal,” J. Lightwave Technol., vol. 17, pp. 2008–2012, Nov. 1999.
[17] R. deRidder and R. Stoffer, “Applicability of the finite-difference time domain method to photonic crystal structures,” presented at the Summer School on Nanoscale Linear and Non-Linear Optics at the International School of Quantum Electronics, Erice, Sicily, Italy, July 2–14, 2000.
[18] K. Handa, S. T. Peng, and T. Tamir, ”Improved perturbation analysis of dielectric gratings, ” Apply. Phys., vol.5, pp.325-328, 1975
[19] R. P. Stanley, R. Houdre, U. Oesterle, and M. Ilegems, Phys. Rev. A 48, 2246, 1993
[20] W. Streifer, R. D. Burnham, and D. R. Schifres , “Analysis of grating-coupled radiation in GaAs : GaAlAs lasers,”IEEE J. Quantum Electron., vol. QE-12, pp. 422–428, 1976.
[21] S. S. Wang, R, Magnusson, and J. S. Bagby, ”Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, pp.1470-1474, 1990
[22] A. Giorgio, A. G. Perri, and M. N. Armenise, ”Very fast and accurate modeling of multilayer waveguide photonic bandgap structures,” J. Lightwave Technol., vol.19, pp.1598-1613, Oct, 2001
[23] W. Streifer, R. D. Burnham, and D, R, Scifres, ”Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides II: blazing effects,” IEEE J. Quantum Electron., vol. QE-12, pp. 494–499,Aug., 1976.
[24] R. E. Smith, S. N. Houde-Walter, and G. W Forbes, "Mode determination for planar waveguide using the four sheeted dispersion relation," IEEE J. Quantum Electron., vol.28, pp.1520-1526, 1992
[25] R. E. Smith, S. N. Houde-Walter, and G. W Forbes, "Mode determination for planar waveguide using the four sheeted dispersion relation," IEEE J. Quantum Electron., vol.28, pp.1520-1526, 1992
[26] Aref Bakhtazad, Habibollah Abiri, and R. Ghayour, "A general transform for retangularizing planar open waveguide dispersion relation," J. Lightwave Technol., vol.15, pp.383-390, Feb. 1997
[27] R. E. Smith, and S. N. Houde-Walter, "The migration of mound and leaky solutions to the waveguide dispersion relation," J. Lightwave Technol., vol.11, pp.1760-1768, Nov. 1993
[28] R. E. Smith, G. W Forbes, and S. N. Houde-Walter, "Unfolding the multivalued planar waveguide dispersion relation," IEEE J. Quantum Electron., vol.29, pp.1031-1034, 1993
[29] K. H. Schlereth and M. Tacke, ”The complex propagation constant of multilayer waveguides:An algorithm for a personal computer, ” IEEE J. Quantum Electron., vol.26, pp.626-630, Apr. 1990.
[30] L. Sun and E. Marhic, “Numerical study of attenuation in multilayer infrared waveguides by the circle-chain convergence method,” J. Opt. Soc. Amer. B, vol.8, pp.478-483, Feb. 1991
[31] A. K. Ghatak, K. Thyagarajan, and M. R. Shanoy, ”Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol., vol.LT-5, pp.660-667, May 1987
[32] L. M. Delves and J. N. Lyness, "A numerical method of locating zeros of an analytic function ," Math. Compu., vol. 21, pp. 543-577. 1967.
[33] L. C. Botten, M. S. Craig, and R. C. McPhedran, "Complex zeros of analytic functions," Comp. Phys. Com., vol. 29, pp. 245-257. 1983. ]
[34] E. T. Whittaker and G. N. Watson, A Course in Modern Analysis. Cambrige: Cambrige Univ. Press, 1980
[35] E. T. Whittaker and G. N. Watson, A Course in Modern Analysis. Cambrige: Cambrige Univ. Press, 1980
[36] J. Petracek, and K. Singh ,“Determination of leaky modes in planar multilayer waveguides,”IEEE Photon. Technol. Lett., vol.14, pp.810-812, Jun, 2002
[37] Yariv, A ., Quantum Electronics, 3rd edition . New York:Wiley, 1989
[38] W. Streifer, R. D. Burnham, and D, R, Scifres, IEEE J. Quantum Electron., vol.11, pp.154, 1975.