簡易檢索 / 詳目顯示

研究生: 王竣鴻
Chun-Hung Wang
論文名稱: 聚□唑啉/聚乳酸團聯共聚物作為奈米藥物載體之研發及其在細胞內藥物傳遞之應用
Studies on Nanoscale Drug Carriers from Poly(2-ethyl-2-oxazoline)/Poly(L-lactide) Block Copolymers and Their Applications in Intracellular Drug Delivery
指導教授: 薛敬和
Ging-Ho Hsiue
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 118
中文關鍵詞: 聚□唑啉聚乳酸團聯共聚物奈米微胞核殼結構環境應答性溫度/酸鹼敏感性生分解性胞飲作用癌症治療細胞內之藥物傳輸
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由兩性高分子(amphiphilic polymer),如雙團聯共聚物(diblock copolymer)及三團聯共聚物(triblock copolymer)所形成的核殼結構(core-shell structure)在高分子微胞藥物傳輸系統(polymeric micellar drug delivery system)應用上具有很多特殊性質與優點。藉由高分子微胞的包覆能夠增進疏水性藥物於水溶液的溶解性及體內的生物可利用度(bioavailability)。高分子微胞外層的殼結構(shell)可由為生物可相容性(biocompatible)之親水性高分子所組成,其能避免網狀內皮組織(reticuloendothelial system)的吸收。而其內層的核結構(core)能包埋或鍵結疏水性藥物保護疏水性藥物。此外,高分子微胞為奈米尺寸(nano-scale)能夠避免被身體代謝系統所排除且在體內能有長時間的循環。
    以聚□唑啉高分子poly(2-ethyl-2-oxazoline)(PEtOz)為親水性鏈段再搭配聚酯類之聚乳酸高分子poly(L-lactide)(PLLA)為疏水性鏈段構成本研究中的兩性高分子。其乃藉由開環聚合反應合成聚□唑啉/聚乳酸雙團聯共聚物(PEtOz / PLLA diblock copolymer)與聚□唑啉/聚乳酸三團聯共聚物(PEtOz / PLLA triblock copolymer)。利用兩性高分子在水溶液中自我組裝(self-assembly)行為製備成高分子微胞。本研究中的高分子微胞具有環境應答性(stimuli-sensitive),如溫度敏感性(thermo-sensitive)與酸鹼敏感性(pH-sensitive)的特性以應用在癌症治療上。
    本研究之藥物傳遞方式主要是在細胞內的藥物釋放上。以靜脈注射方式使高分子藥物載體進入體內,藉由Enhanced Permeability and Retention effect (EPR effect效應)累積於腫瘤組織後,再利用胞飲作用(endocytosis)使高分子藥物載體吞噬進入到細胞內。因細胞內pH值的改變使高分子藥物載體的結構產生破壞釋放出藥物達到癌症治療的效果。本研究所設計的聚□唑啉/聚乳酸團聯高分子微胞(PEtOz/PLLA block copolymer micelle)能夠在生理環境(pH7.4)下穩定地保護藥物,然而在細胞內由於吞噬小體(endosomes)或溶酶體(lysosomes)所造成的pH值的下降(pH 4~5),使高分子藥物微胞變形破壞釋放出藥物。
    所製備的聚□唑啉/聚乳酸團聯高分子微胞其粒徑分佈小於200 nm。利用動態光散射(dynamic light scanning)探討微胞之聚集行為、酸鹼敏感性質及微胞於牛血清蛋白(bovine serum albumin)之穩定性。並以螢光光譜儀(fluorescence spectrophotometer)探討微胞之臨界微胞濃度(critical micelle concentration)及微胞結構破壞等性質。抗癌藥物(Doxorubicin , Dox)以物理性作用力包覆於高分子微胞內的疏水性聚乳酸(PLLA)之內核。以聚□唑啉/聚乳酸三團聯共聚物所形成之奈米微胞其藥物包覆率達30 % 以上;聚□唑啉/聚乳酸雙團聯共聚物所形成之奈米微胞其藥物包覆率達20 %以上。在37℃下,兩種不同團聯共聚物所形成之奈米微胞在酸性環境下(pH5.0)皆具有快速釋放藥物之特性。在初期3小時內釋放量皆高於30 % 而在中性環境下(pH7.4)由於奈米微胞結構穩定,使藥物釋放速率十分緩慢。並利用人類子宮頸癌細胞(HeLa)與藥物微胞進行細胞培養,經MTT比色分析,證明這種抗癌藥物微胞的確具有抑制人類子宮頸癌細胞(HeLa)增生繁殖並有效毒殺癌細胞之效果,而達到癌症治療的效果。
    本研究中,PEtOz / PLLA團聯共聚物兼具環境應答性、生物可分解性與低毒性等優點,將其應用於智慧型奈米藥物微胞的設計上,體內與體外之藥物釋放情況皆非常優異。以共軛焦顯微鏡影像證明微胞結構在細胞酸性胞器內被破壞,藥物能成功地在細胞質之酸性胞器內被釋放,達到適時、適地之控制釋放的效果。綜合上述結果可知,此包埋抗癌藥物(Doxorubicin, Dox)之聚□唑啉/聚乳酸團聯高分子微胞在細胞內之藥物傳輸上有優良的效果,顯示此一團聯高分子微胞在藥物傳輸上有極大的潛力。


    Abstract
    Polymeric micellar drug delivery systems (MDDSs) of core-shell architecture based on amphiphilic AB diblock or ABA triblock copolymers possess numerous advantages. They improved solubility and bioavailability of hydrophobic drugs that were poorly soluble or insoluble in water. Micelles with biocompatible hydrophilic shell exhibited low uptake by the reticuloendothelial system even if they had a nonbiocompatible core and hydrophobic core significantly protect the incorporated drug . Additionally, polymeric micelles with nano-scale could avoid the recognition by MPS or RES and they prolonged the circulation time in blood.
    In this study, polymeric micelle with environmental stimuli-sensitive properties such as thermo-sensitive properties and pH-sensitive properties were prepared for used in drug delivery. Polymeric micelles were self-assembled from diblock and triblock copolymers in aqueous solution, respectively. Amphiphilic block copolymers with hydrophilic block segment of poly(2-ethyl-2-oxazoline)(PEtOz) and biodegable aliphatic polyester segment of poly(L-lactide)(PLLA) were synthesized from cationic ring-opening polymerization.
    This study proposes a new delivery system, which was potentially useful for targeted drug delivery, and rapidly changes the micelle structure in response to changes in intracellular pH. Following intravenous administration, polymeric micelles were accumulated in tumor tissue by EPR effect, and then taken up to cells via endocytosis process. The pH value of endosomal comportments were decreased from 7.4 to 5 because protons are pumped into the vesicles. From our design, the micellar structures can stabilized to preserve hydrophobic drug(Doxorubicin, Dox) under physiological conditions(pH7.4) and selectively release the drugs by sensing the intracellular pH change in endosomes and lysosomes(pH 4~5).
    The micelles were self-assembled from PEtOz-PLLA diblock amphiphilic copolymers and PLLA-PEtOz-PLLA triblock amphiphilic copolymers, respectively. The hydrophobic anticancer drug could be entrapped into the hydrophobic core resign of micelles. The characterizations, pH-sensitive properties, micellar stability were determinated by dynamic light scanning(DLS). Additionally, critical micellar concentration(CMC) and structure changed properties of micelle were determinated by fluorescence spectrum.
    The mean diameters of micelles were all less than 200 nm and exhibited low polydispersity index. The drug loading level of Doxorubicin(DOX) incoporated into the PEtOz/PLLA triblock polymeric micelles can be as high as 30 % . The drug loading level of Doxorubicin(DOX) incoporated into the PEtOz/PLLA diblock polymeric micelles can be as high as 25 % . At 37℃, the cumulated released rate of Dox from PEtOz/PLLA diblock polymeric micelle at pH5.0 was about 35 % in the initial 3 hour. On the other hand, both micelles exhibit less drug relesed at pH7.4 , indicating that micelles were stabilized in physiological conditions. In use of the method of MTT assay, we could confirm the inhibiting proliferation of HeLa by the releasing anticancer drug and effective therapy to cancer in vitro.
    In conclusion, PEtOz /PLLA block copolymers possessed the advantages of environmental sensitivity, biodegradability and lower cytotoxicity, that were suitable for used in drug delivery, especially for cancer therapy. The drug released behaviors of micelles incorpotated with Dox were excellent either in buffer solution or in intracellular endosomal compartment. The result of CLSM observation indicated the release of drug successfully released in the acidic organelles due to the deformation of the micelle structure. As the results, these micelles loaded anticancer drug(Dox) have great potential for application in drug delivery system, especially for used in intracellular drug delivery .

    Keywords: Poly(2-ethyl-2-oxazoline)(PEtOz) , Poly(L-lactide)(PLLA), block polymer, micelle, core-shell, stimuli-sensitive, biodegable , self-assembly, endocytosis process.,cancer therapy, intracellular drug delivery

    一、研究背景…………………………………………………………...1 二、文獻回顧…………………………………………………………...6 2-1 聚□唑啉poly(2-oxazoline)…………………………………...6 2-1-1起始劑 ………..………………………………………....7 2-1-2反應機構………………………………………………....9 2-1-3性質與應用……………………………………………...11 2-2離子性高分子………………………………………………....11 2-3生物可分解性高分子…………………………………………12 2-3-1常見天然的生物可分解性高分子……………………...14 2-3-2常見合成的生物可分解性高分子……………………...14 2-4高分子微胞之設計……………………………………………19 2-5藥物傳釋系統(Drug Delivery System)……………………… .24 2-5-1藥物傳輸標的…………………………………………...26 2-5-2腫瘤組織構造與藥物傳遞之關係………………..…….28 2-5-3藥物載體吞噬之機制…………………………………...29 三、實驗流程…………………………………………………………...33 3-1藥品……………………………………………………………..35 3-2名詞對照………………………………………………………..36 3-3實驗儀器及裝置………………………………………………..36 3-4高分子之合成…………………………………………………..38 3-4-1高分子Poly (2-ethyl-2-oxazoline)之合成………….……38 3-4-2 PEtOz /PLLA 團聯共聚物高分子之合成………………39 3-5製備PEtOz / PLLA團聯共聚物之奈米微胞…………………..42 3-5-1 PLLA-PEtOz-PLLA三團聯共聚物之奈米微胞………...42 3-5-2 PEtOz-PLLA雙團聯共聚物之奈米微胞……………......42 3-6 團聯共聚物之結構鑑定與性質分析………………………….44 3-6-1 1H-NMR結構分析……………………………………….44 3-6-2 FT-IR結構分析…………………………………………..44 3-6-3 GPC 分子量量測………………………………………...44 3-6-4 DSC熱性質分析…………………………………………44 3-6-5 PEtOz/PLLA團聯共聚物相轉位溫度………………..…45 3-6-6 PEtOz/PLLA團聯共聚物臨界微胞濃度……………..…45 3-7奈米微胞之結構鑑定與性質分析……………………………..46 3-7-1 1H-NMR結構分析……………………………………….46 3-7-2高分子微胞粒徑分析…………………………………….46 3-7-3高分子微胞之結構破壞………………………………….47 3-7-4高分子微胞之安定性………………………………….....48 3-7-5高分子微胞之細胞存活率……………………………….48 3-8 PEtOz / PLLA高分子微胞之藥物包覆……………...………...49 3-8-1 PEtOz / PLLA三團聯高分子微胞之藥物包覆………....49 3-8-2 PEtOz / PLLA雙團聯高分子微胞之藥物包覆……...….50 3-8-3高分子藥物載體之安定性……………………………….50 3-9 PEtOz /PLLA高分子微胞之藥物含量測試……………..……51 3-10藥物與高分子藥物載體之細胞毒殺實驗……………………53 3-11藥物分佈與微胞之內吞作用…………………………………54 四、結果與討論…………………………………………………………55 4-1結構鑑定………………………………………………………..55 4-2 FT-IR結構分析…………………………………………………59 4-3 GPC 分析………………………………………………………61 4-4 PEtOz / PLLA團聯共聚物之之熱性質……………..………...63 4-5高分子之相轉移溫度…………………………………………..65 4-6 高分子之臨界微胞濃度……………………………………….68 4-7高分子微胞之表面結構1H-NMR分析……………………….71 4-8粒徑分佈………………………………………………………..73 4-8-1 PLLA-PEtOz-PLLA三團聯共聚物高分子微胞…...……73 4-8-2 PEtOz-PLLA雙團聯共聚物高分子微胞……………......76 4-9 PEtOz / PLLA團聯共聚物高分子微胞表面型態……..……...79 4-10高分子微胞之酸鹼敏感性分析………………………………81 4-10-1 PEtOz / PLA三團聯高分子微胞及其藥物載體…….....81 4-10-2 PEtOz / PLLA雙團聯高分子微胞及其藥物載體…......85 4-11高分子微胞之結構破壞………………………………………87 4-12高分子微胞及其藥物載體之安定性分析……………………89 4-13高分子藥物載體之藥物釋放分析……………………………91 4-13-1 PEtOz / PLA三團聯藥物載體…………...……………..91 4-13-2 PEtOz / PLA雙團聯藥物載體……………………...…..94 4-14高分子微胞及其藥物載體之細胞存活率……………………95 4-15藥物分佈與微胞之內吞作用…………………………………98 4-15-1 PEtOz /PLLA 三團聯藥物載體………………...……...98 4-15-2 PEtOz /PLLA 雙團聯藥物載體………………..……..106 五、結論……………………………………………………………….111 六、參考文獻………………………………………………………….113

    1. G. S. Kwon, K. Kataoka, Adv.Drug Deliv.Res., 16(1995),p295
    2. G. S. Kwon, T. Okano, Adv.Drug Deliv.Res., 2(1996),p107
    3. M. Hruby , C. Konak , K.Ulbrich , J. Control. Release, 103 (2005),
    p137
    4. Z. Gao, A Eisenberg, Macromolecules, 26 (1993),p7353
    5. M. Malmesten, B. Londman, Macromolecules, 25 (1992),p5440
    6. K. Kataoka, G. S. Kwon, M.Yokoyama, T. Okano, Y. Sakurai, J. Control.Release, 24(1993),p119
    7. M.C. Jones, J.C. Leroux, J.Europ.Pharm.Biopharm., (1999), p101
    8. X. Shuai, H. Ai, N. Nasongkla, S. Kim, J. Gao, J.Control. Release, 98(2004),p415
    9. Cornelus.F.van Nostrum, Adv.Drug Deliv.Res., 56(2004),p9
    10. G. A. Husseini, R. I. EL Fayoumi, K. L. ONeill, N. Y. Rapoport, W. G. Pitt , Cancer Lett., 154(2000),p211
    11. A. Marin, M. Muniruzzaman, N. Rapoport, J.Control. Release, 75(2001),p69
    12. X. M. Liu, L.S. Wang, Biomaterials, 25(2004),p1929
    13. X. M. Liu, L. S. Wang, L. Wang, J. Haung, C. He, Biomaterials, 25(2004),p5659
    14. D. E Meyer, B. C. Shin, G.. A. Kong, M. W. Dewhirst, A. Chilkoti, J.Control. Release, 74(2001)213-224
    15. J. E. Chung, M. Yokoyama, T. Okano, J.Control.Release, 65(2000),p93
    16. A. Lavasanifar, J. Samuel, G..S. Kwon, Adv.Drug deliv. Res., 54(2002),p169
    17. M. C. Woodle, C. M. Engbers, S. Zalipsky, Bioconjug. chem., 6(1994),p493
    18. S. Li, H. Garreau, M. Vert, J. Mater. Sci.Mater. M., 1 (1990),p198
    19. M. S. Reeve, S. P. McCarthy, M. J. Downey, R. A. Gross, Macromolecules, 27(1994) ,p825
    20. S. Li, M. Tenon, H Garreau, C. Braud, M. Vert, Polym. Degrad. Stabil. ,67(2000),p85
    21. S. Li, S. McCarthy, Macromolecules, 32(1999),p4454
    22. R. T. MacDonald, S. P. McCarthy, R. A. Gross, Macromolecules, 29(1996), p7356
    23. C. H. Wang, G.. H. Hsiue, J.Polym.Sci.Polym.Chem, 40(2002), p1112
    24. T. Kagiya, S. Narisawa, T. Maeda and K. Fukui, J. Polym. Sci. Polym. Lett. Ed., 4 (1966), p441.
    25. T. Saegusa, Makromol. Chem., Macromol. Symp., 13(1988),p111
    26. K. Aoi and M. Okada, Prog. Polym. Sci., 21(1996), p151.
    27. S. Kobayashi, E. Masuda, S. I. Shoda and Y. Shimano, Macromolecules,22(1989), p2878.
    28. A. K. Hilbed, U. Fritzsche, T. KisseL, Vaccine, 17(1999), p1065
    29. T. Kissel, Y.X. Li, C. Volland, S. Gorich, R. Koneberg, J. Control. Release, 39 (1996), p315
    30. C. Witt, K. Mader, T. Kissel, Biomateials, 21(2000), p931
    31. N. Kumar, M.N.V Ravikumar, A.J. Dom,, Adv.Drug Deliver. Res., 53(2001), p23
    32. Kohn F. E., J. W. A. Van Den Berg, G. Van Den Berg, and J.Feijen, J. Appl.Polym.Sci., 29(1984),p.426
    33. Molina, S. Li, N. B. Martinez, M. Vert, Biomaterials, 22(2001), p363
    34. X. Zhang, J. K. Jackson, W. Wong, W. Min, T. Cruz, W. L. Hunter, H. M. Burt, Int. J. Pharm., 137(1996), p199
    35. B. Jeong, Y. H. Bae, D.S. Lee, S.W. Kim, Nature, 28(1997), p388
    36. B. Jeong, Y.K. Choi, Y.K. Bae, G, Zentner, S.W. Kim, J. Control. Release, 62 (1999), p109
    37. B. Jeong, Y. H. Bae, S.W. Kim, J. Control. Release, 63(2000), p155
    38. K. W. Kwon, M. J. Park, Y. H. Bae, H. D. Kim, K. Char, Polymer, 43(2002), p3353
    39. W. R. Ye, F. S. Du, W. H. Jin, J. Y. Yang, Y. Xu, Reac.Func. Polym., 32(1997 ), p161
    40. C. Kim, S. C. Lee, S. W. Kmg, I. C. Kwon, S.Y Jeong, J. Polym. Sci. Pol. Phys., 38(2000), p2400
    41. S.C. Lee, Y. Chang, J.S. Yoon, C. Kim, I.C. Kwon, Y.H. Kim, S.Y. Jeong, Macromoleculrs, 32(1999), p1847
    42. L. Martini, D. Attwood, J. H. Collett, A. D'Emanuele, Int. J. Pharm., 113 (1995), p223
    43. Y. Zhao, H. Liang, S. Wang, C. Wu, J.Phy.Chem.B, 105(2001), p848
    44. Q. Cai, J. Bei, S. Wang, Polymer, 43 (2002), p3585
    45. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nature biotech., 22(2004),p969
    46. K. Ulbrich, V. Subr, Adv. Drug Deliv. Revs, 56(2004),p1023
    47. R.K. Jain, Cancer Res., 47(1987), p3039
    48. R.K. Jain, J. Control. Release, 74(2001),p7
    49. D. Putnam, J. Kopecek, Adv. Polym. Sci., 122(1994), p55
    50. C. J. T. Hoes, J. Feijen, Makromol Chem., 70(1993), p119
    51. J. Heuser, L. Evans, J.Cell Biol, 84( 1980), p560
    52. I. Pastan, M.C. Willingham, D. J. P. Fitz Gerald, Immunotoxins Cell, 47(1986), p641
    53. M.C. Jones, J.C. Leroux, J.Europ.Pharm.Biopharm., (1999), p101
    54. O. Soga, C. F. Nostrum, M. Fens, C. J. F. Rijcken, R. M. Schiffelers, G. Storm, W. E. Hennink, J. Control. Release, 103(2005),p341
    55. N. Kang, M. E. Perron, R. E. Prudhomme, Y. Zhang, G. Gaucher, J.C. Leroux, Nanoletter, 2(2005),p315
    56. S.Cammas, T. Matsumoto, T. Okano, Y. Sakuari, K. Kataoka, Mater.s Sci. enginn. C, 4(1997),p241
    57. R. B. Iglesias, L. Bromberg, M. Temchenko, T. A. Hatton, A. Concheiro, C.A. Lorenzo, J. Control.Release, 97(2004),p537
    58. P. Opanasopit, M. Yokoyama, M. Watanabe, K. Kawano, Y. Maitani.T. Okano, J. Control. Release, 104(2005),p313
    59. M. Hruby, C. Konak, K. Ulbrich, J. Control. Release, 103(2005),p137
    60. T. Yamaoka, Y. Tabata, Y. Ikada, J. Pharm. Sci., 83(1994), p601
    61. N.B. Graham, M. Zulfiqar, Polymer, (1989), p2130
    62. F. Kohori, M, Yokoyama, K. Sakai, T. Okano, J. Contrl. Release, (2002), p155
    63. Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew.Chem.Int.Ed, 42 (2003), p4640
    64. M. Yokoyama, S. Fukushima, R. Uehara, K. Okamoto, K. Kataoka, Y. Sakurai,T. Okano, J. Control. Release, (1998), p79
    65. C.H. Wang, G..H. Hsiue, J. Polym. Sci. Polym. Chem., 40(2002), p1112
    66. C.H. Wang, G..H. Hsiue, Biomacromolecules, 4 (2003), p148
    67. Y. Hu, X. Jiang, Y. Ding, L. Zhang, C. Yang, J. Zhang, J. Chen, Y. Yang, Biomaterials, 24(2003), p2395
    68. G. Ruan, S.S. Feng, Biomaterials, 24(2003), p5037
    69. F. Liu, A. Eisenberg, J. Am. Chem. Soc, (2003), p15059
    70. K. Hiltunen, J.V. Seppala, M. Harkonen, MacroMoleculars, 30(1997), p373
    71. S. Hyon, K. Jamshidi, Y. Lkada, Biomaterial, 18(1997), p1503
    72. J. Rak, J.L. Ford, C. Rostron, V. Walters, Pharm. Acta Helv., 60(1985), p162
    73. J. Dahlmann, G.. rafler, British Polymer J., 23(1990), p235
    74. R. Duncan, Pharm. Sci. Tech. Today, 2 (1999), p441
    75. N.Kang, M. E. Perron, R. E. Prudhomme, Y. Zhang, G. Gaucher, J.C. Leroux, Nano lette, 5(2005),p315
    76. T. Liu, K. Kim, B. S. Hsiao, B. Chu, Polymer, 45(2004),p7989
    77. C.J.T. Hoes, J. Grootoork, J. FeUen, P.J. Boon, F. Kaspersen, J. Control. Release, 19(1992), p59
    78. R. Duncan, H.C Cable, J.B. Lloyd, P. Rejmanova, J. Kopecek, Biosci. Reports, 2(1982), p1041
    79. Y. Sadzuka, S. Nakai, A. Miyagishima, Y. Nozawa, S. Hirota, Cancer Letters, 111(1997), p77
    80. K. Uchiyama, A. Nagayasuu, Y. Yamagiwa, T. Nishida, H. Harashima, Int. J. Pharm., 121(1995), p195
    81. Y. Sadzuka, S. Hirota, Cancer letters, 131(1998), p163
    82. K. Uchiyama, A. Nagayasuu, Y. Yamagiwa, Int. J.Pharm, 146 (1997), p31
    83. J.C. Leroux, E. Allemann, F. De Jaeghere, E. Doelker, R. Gurny , J. Control. Release, 39(1996), p339
    84. l. Brigger, C. Dubernet, P. Couvreur, Adv. Drug. Deliv. Rev, 54 (2002), p631
    85. V. P. Torchilin, Adv. Drug .Deliv. Rev., 57(2005),p95
    86. Mohamed E. H. El-Sayed, A. S. Hoffman, P. S. Stayton, J. Control. Release, 101(2005),p47
    87. M. H. Dufresne, D. L. Garrec, V. Sant, J. C. Leroux, M. Ranger., Int. J. Pharm., 277(2004),p81
    88. S. Q. Liu, Y. W. Tong, Y. Y. Yang, Biomaterials, 26(2005),p5064
    89. N. Nishiyama, Y. Bae, K. Miyata, S. Fukushima, K. Kataoka, Drug Disco. Today :Techno., 1(2005),p21
    90. D. C. Harris, Quantitative Chemical Analysis 3rd Edition, Freeman, New York, 1991.
    91. Y. Chung, K. L. Simmons, A. Gutowska, B. Jeong, Biomacromolecules ,3(2002), p511.
    92. 范國榮,〝聚□唑啉與聚乳酸三團聯共聚物的降解行為探討〞,國立清華大學化學工程學系碩士論文(2003)
    93. 王朝暉,〝新型聚□唑啉/聚乳酸團聯共聚物在藥物及基因傳輸上的應用〞,國立清華大學化學工程學系博士論文(2004)
    94. 孫一明、許紹菁,化工技術第七卷第五期(1999)
    95. 王盈錦、張淑娟,化工技術第九卷第五期(2001)
    96. 蔡燕鈴、陳暉,化工技術第十卷第三期(2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE