簡易檢索 / 詳目顯示

研究生: 蔣玉亭
Yu-Ting Chiang
論文名稱: 以生化方法分析肌動蛋白與後突觸質密區蛋白之交互作用
Biochemical analysis of interactions between actin and postsynaptic density
指導教授: 張兗君
Yen-chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 65
中文關鍵詞: 肌動蛋白後突觸質密區蛋白
外文關鍵詞: Actin, Postsynaptic density
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在哺乳類動物的中樞神經系統內,突觸為兩個神經系統傳遞訊號的構造及位置。緊貼在突觸的後突觸細胞膜上,有一群結構緊密,由幾十種不同種類蛋白質所組合而成的碟狀蛋白質聚合物,稱作後突觸質密區(postsynaptic density,簡稱PSD)。因其座落於樹突狀小刺的頂端,且所含蛋白質種類繁多,其功能極有可能包含了神經傳遞質受器聚合的管制,神經傳遞質受器功能的調控,以及細胞胞內訊號傳導的控制。過去研究指出,在後突觸質密區內含有肌動蛋白,以及不同種類的肌動蛋白結合蛋白,所以後突觸質密區極有可能扮演著連結細胞肌動蛋白骨架與神經傳導物質及訊號傳遞分子的角色。本篇論文主要是利用混濁度實驗、離心沉澱實驗、以及穿透式電子顯微鏡觀察等生化方法,來研究細胞肌動蛋白與後突觸質密區蛋白的相互作用。混濁度實驗的結果顯示,加入肌動蛋白會造成後突觸質密區吸光值的增加。離心沉澱實驗的結果顯示,加入肌動蛋白會促使後突觸質密區蛋白碎片的產生。進一步的經由穿透式電子顯微鏡觀察,發現這些碎片數量眾多且形狀不一。另外,加入氯化鉀以及三磷酸腺苷(adenosine triphosphate)亦會造成類似現象,但效果不若加入肌動蛋白來的顯著。因此,本研究發現,肌動蛋白有能力影響後突觸質密區蛋白的結構,使其破碎並且產生大量的蛋白質碎片。


    The postsynaptic density (PSD) is a compact disk-shaped structure located beneath the postsynaptic plasma membrane of synapses of the central nervous system, and is thought to play a role in neurotransmission and synaptic plasticity. It lies at the top of the spine head, and based on its location and protein composition, its functions are proposed to control neurotransmitter receptor clustering, regulate receptor function, and to mediate intracellular signaling. Past studies of PSD have shown that a substantial amount of actin is present within the PSD complex, as well as several actin-binding proteins, suggesting that PSD serves as a link between the actin cytoskeleton and neurotransmitter receptors and other signaling molecules. In this study, it was observed that addition of actin to PSD resulted in structural changes of PSD. This effect caused by actin was shown by an increase in PSD turbidity, as indicated by higher absorbance at 340nm, and by an increase in the amount of fragmented PSD particles indicated by sedimentation assays and transmission electron microscopy studies. Also, addition of salt and ATP to PSD produced similar effects, but to a lesser extent compared to that caused by the addition of actin. In conclusion, actin is able to promote PSD fragmentation.

    Introduction…………………………………………………1 Materials and Methods Materials………………………………………………………8 Methods…………………………………………………………9 Results Turbidimetric assay…………………………………………19 Sedimentation assays…………………………………………23 Transmission electron microscopy…………………28 Discussion Turbidimetric assay……………………………………………30 Actin-PSD interaction…………………………………………31 Effects of KCl, Mg2+, ATP and GTP on PSD turbidity……33 Transmission electron microscopy……………………………34 References…………………………………………………………36 Figures and figure legends……………………………………42

    REFERENCES

    Apperson, M. L., Moon, I. S., Kennedy, M. B. (1996). Characterization of densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J. Neurosci. 16: 6839-6852.

    Berne, B. B. (1974). Interpretation of the light scattering from long rods. Mol. Bio. 89: 755-758.

    Blitz, A.L., Fine, R. E. (1974). Muscle-like contractile proteins and tubulin in synaptosomes. Proc. Natl. Acad. Sci. U.S.A. 71 (11): 4472-4476.

    Blomberg, F., Cohen, R. S., Siekevitz, P. (1977). The structure of postsynaptic densities isolated from dog cerebral cortex II: characterization and arrangement of some of the major proteins within the structure. The Journal of Cell Biology 74: 204-225.

    Bredt, D. S., Nicoll, R. A. (2003). AMPA receptor trafficking at excitatory synapses. Neuron 40: 361-379.

    Bridgeman, P. C. (2004). Myosin-dependent transport in neurons. J. Neurobiol. 58: 164-174.

    Caceres, A., Payne, M. R., Binder, L. I., Steward, O. (1983). Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc. Natl. Acad. Sci. U.S.A. 80 (6):1738-42.

    Caceres, A., Banker, G., Steward, O., Binder, L., Paye, M. (1984). MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res. 1984 Apr;315(2):314-8.

    Carlin, R. K., Grab, D. J., Siekevitz, P. (1982). Postmortem accumulation of tubulin in postsynaptic density preparations. J. Neurochem. 38: 94-100.

    Carlin, R. K., Bartelt, D. C., Siekevitz, P. (1983). Idenfication of fodrin as a major calmodulin-binding protein in postsynaptic density preparations. J. Cell. Biol. 96 (2): 443-448.

    Carlin, R. K., Siekevitz, P. (1984). Characterization of Na+-independent of GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities from canine cerebral cortex and cerebellum. J. Neurochem. 43: 1011-1017.

    Carr, D. W., Stofko, H. R., Fraser, I. D., Cone, R. D., Scott, J. D. (1992). Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J. Biochem. 267: 16818-16823.

    Chen, Y., Derin, R., Patralia, R. S., Li, M. (2002). Actifilin, a brain-specific actin-binding protein in postsynaptic density. The Journal of Biological Chemistry 277 (34): 30495-30501.

    Cohen, R. S., Blomberg, F., Berzins, K. Siekevitz, P. (1977). The structure of postsynaptic densities isolated from dog cerebral cortex. J. Cell Bio. 74: 181-203.

    Cotman, C. W., Banker, G. Churchill, L. Taylor, D. (1974). Isolation of postsynaptic densities from rat brain. J. Cell Biol. 63: 441-455.

    Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C., Yuste, R. (1999). Developmental regulation of spine motility in the mammalian central nervous system.
    Proc. Natl. Acad. Sci. U.S.A. 96: 13438-13443.

    Fifkova, E., Delay, R. J. (1982). Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol. 95(1): 345-350.

    Fischer, M., Kaech, S., Knutti, D., Matus, A. (1998). Rapid actin-based plasticity in dendritic spines. Neuron 20: 847-854.

    Furukawa, K., Fu, W., Li, Y., Witke, W., Kwaitkowski, D. J., Mattson, M. P. (1997). The actin-severing protein gelsolin modulates calcium channel and NAMD receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17: 8178-8186.

    Gaskin, F., Cantor, C. R., Shelanski, M. C. (1974). Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J. Mol. Biol. 89: 737-758.

    Gray, N. W., Kruchten, A. E., Chen, J., McNiven, M. A. (2005). A dynamin-3 spliced variant modulates the actin/cortactin-dependent morphogenesis of dendritic spines. J. Cell. Sci. 118 (6): 1279-1290.
    Gundelfinger E. D., Tom Dieck S. (2000). Molecular organization of excitatory chemical synapses in the mammalian brain. Naturwissenschaften 87(12):513-23.
    Gray, E. G. (1959). Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopy study. J. Anat. 93: 420-433.

    Hall, D., Minton A. P. (2005). Turbidity as a probe of tubulin polymerization kinetics: A theoretical and experimental re-examination. Analytical Biochemistry 345: 198-213.

    Halpain, S. (2000). Actin and the agile spine: how and why do dendritic spines dance. Trends Neurosci. 23: 141-146.

    Harris, J. O. (1958). The assembly and use of an automatic turbidity recording device. Appl. Microbiol. 6 (4): 266-268.

    Hayashi, Y., Ishida, A., Katagiri, H., Mishina, M., Fujiwawa, H., Manabe, T., Takahashi, T. (1997). Calcium- and calmodulin-dependent phosphorylation of AMPA type glutamate receptor subunits by endogenous protein kinases in the postsynaptic density. Brain Res. Mol. Brain Res. 46: 338-342.

    Kaech, S., Fischer, M., Doll, T., Matus, A. (1997). Isoform specificity in the relationship of actin to dendritic spines. The J. of Neurosci. 17 (24): 9566-9572.

    Kelly, P. T., Cotman, C. W. (1978). Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J. Cell Biol. 79: 173-183.

    Kelly, P. T., Mcguibbess, T. L., Greengard, P. (1984). Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc. Natl. Acad. U.S.A. 81: 945-949.

    Kennedy, M.B. (1997).The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20: 264-268.

    Kennedy, M. B., Bennett, M. K., Erondu, N. E. (1983). Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 80: 7357-7361.

    Kennedy M. B. (2000). Signal-processing machines at the postsynaptic density. Science 290: 750-754.
    Kennedy, M. J., Ehlers, M. (2006). Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci. 29: 325-362.

    Kim, T. W., Wu, K., Xu, J. L., Black, I. B. (1992). Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA. 89 (23): 11642-11644.

    Lidov H. G., Byers, T. J., Watkins, S. C., Kunkel, L. M. (1990). Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature 384: 725-728.

    Liu S. H., Cheng H.H., Huang S.Y., Yiu P.C., Chang Y.C. (2006). Studying the protein organization of the postsynaptic density by a novel solid phase- and chemical cross-linking-based technology. Mol. Cell Proteomics. 5(6): 1019-1032.

    Lo, li-pin. (2005). 豬腦後突觸質密區與微管間作用之研究. 國立清華大學分子醫學所碩士論文.

    Lujan, R., Nusser, Z., Roberts, J. D., Shigemoto, R., Somogyi, P. (1996). Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8: 1488-1500.

    Malenka, R. C., Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44: 5-21.

    Matus,A. I., Taff-Jones, D. H. (1978). Morphology and molecular composition of isolated postsynaptic junctional structure. Proc. R. Soc. Lond. B. 203: 135-151.

    Matus, A. I. (1999). Postsynaptic actin and neuronal plasticity. Current Opinion in Neurobiology 9: 561-565.

    McNiven, M. A., Kim, L., Kruegger, E. W., Orth, J. D., Cao, H., Wong, T. W. (2000). Regulated interactions between dynamin and the actin-binding protein cortactin modulates cell shape. J. Cell. Biol. 151: 187-198.

    Moon, I. S., Apperson, M. L., Kennedy, M. B. (1994). The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor unit 2B. Proc. Natl. Acad. Sci. U.S.A. 91: 3954-3958.
    Mummery, R., Sessay, A., Lai, F. A., Beesley, P. W. (1996). Beta-dystroglycan: subcellular localization in rat brain and detection of a novel immunologically related, postsynaptic density-enriched protein. J. Neurochem. 66: 2455-2459.

    Oertner, T., Matus, A. (2005). Calcium regulation of actin dynamics in dendritic spines. Cell Calcium 37: 477-482.

    Osterweil, E., Wells, D. G., Mooseker, M. S. (2005). A role for myosin VI in the postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168: 329-338.

    Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. A., LaMantia, A. C., McNamara, A. S., Williams, S. M. (2001). Neuroscience. Sinhauer Associates.

    Qualman, B., Boeckers, T., Jeromin, M., Gundelfinger, E. D., Kessels, M. (2004). Linkage of the actin cytoskeletion to the postsynaptic density via direct interactions of Abp1 with the ProSAP/Shank family. The Journal of Neuroscience 24 (10): 2481-2495.

    Seidenbecher, G. I., Langnaese, K., Sanmarti-Vila, L., Boeckers, T. M., Smalla, K. H., Sabel, B. A., Garner, C. C. (1998). Caldendrin a novel neuronal calcium-binding protein confined to the somato-dendritic compartment. J. Biol. Chem. 273 (33): 21324-21331.

    Siekevitz., P. (1985). The postsynaptic density: a possible role in long-lasting effects in the central nervous system. Proc. Natl. Acad. Sci. U.S.A. 82: 3494-3498.

    Squire, L. R., Bloom, F. E., McConnell, S. K., Roberts, J. L., Spitzer, N. C., Zigmond, M. J. (2003). Fundamental Neuroscience. Elsevier Science Academic Press.

    Star E. N., Kwiatkowski D. J., Murthy V. N. (2002).Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 2002 Mar;5(3):239-46.

    Suzuki, T., Okumura, N. K., Tanaka, R., Ogura, A., Nakamura, K., Kudo, Y., Tada, T. (1993). Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus and cerebellum. Brain Res. 619: 69-75.
    Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O., Takeichi, M. (2002). Cadherin regulates dendritic spines morphogenesis. Neuron 35 (1): 77-89.

    Walters, B. W., Matus, A. I. (1975). Tubulin in postynaptic junctional lattice. Nature 257: 496-498.

    Wells, A. L., Lin, A. W., Chen, L. Q., Safer, D., Cain, S. M. (1999). Myosin VI is an actin-based motor that moves backwards. Nature 401: 505-508.

    Wolf, M., Burgess, S., Misra, U. K., Sahyuonr, N. (1986). Postsynaptic densities contain a subtype of protein kinase C. Biochem. Biophys, Res. Comm. 140: 691-698.

    Wu, K., Carlin, R., Sachs, L., Siekevitz, P. (1985). Existence of Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from cain cerebral cortex and cerebellum, as determined by apamin binding. Brain Res. 360: 183-194.

    Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A. H., Craig, A. M., Sheng, M. (1997). Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385: 439-442.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE