簡易檢索 / 詳目顯示

研究生: 魏良儒
Wei, Liang-Ju
論文名稱: 優選方向對氮化釩硬膜破裂韌性之影響
Effect of Preferred Orientation on the Fracture Toughness of VN Hard Coatings
指導教授: 黃嘉宏
Huang, Jia-Hong
喻冀平
Yu, Ge-Ping
口試委員: 張銀祐
張奇龍
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 117
中文關鍵詞: 破裂韌性殘留應力氮化釩覆膜累積內能誘發破裂法織構
外文關鍵詞: Fracture toughness, Residual stress, VN coating, Internal energy induced cracking (IEIC) method, texture
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的為利用累積內能引發鍍層破裂之原理(IEIC法)量測氮化釩硬膜的破裂韌性,並調查織構對破裂韌性的影響。利用非平衡磁控濺鍍系統在兩種不同的氮氣流量下,鍍覆不同織構的氮化釩薄膜於矽(100)基材上。本研究把統計方法運用在IEIC法之量測過程中,以提升量測數值的正確性與可靠性。實驗結果顯示破裂韌性與織構相關,具有random織構之氮化釩薄膜的破裂韌性為26.5±2.2 J/m^2,而具有(200)織構之氮化釩薄膜則是46.6±3.7 J/m^2。兩種織構在破裂韌性之差異可能歸因於殘留應力的影響。因為氮化釩薄膜在<200>方向的彈性常數為三大主要平面中之最大,在基材的固定邊界情況下<200>方向的殘留應力也就相對較高,因而造成破裂韌性的提升。不論是random織構或(200)織構,薄膜的破裂形貌是相似的,裂縫傳遞路徑皆由木紋狀的R1區域和鋸齒狀的R2區域所組成。由於相對較平緩的應力梯度,邊緣的拉伸應力作用於薄膜中局部的缺陷處促使裂縫生成。其與氮化鋯薄膜的破裂行為相似,同樣是自由邊界效應造成之應力分布隨著裂縫前端移動,因而推動主要裂縫的階梯式成長。與敝實驗室之氮化鈦和氮化鋯之文獻結果相比,氮化釩硬膜具有相對較高的破裂韌性,特別是(200)織構。氮化鋯的破裂形貌中只有R2區域被觀察到,R1區域是氮化釩與氮化鋯在裂縫傳播路徑上的主要差異。


    The main objectives in this study were to measure the fracture toughness (Gc) of VN hard coatings using internal energy induced cracking (IEIC) method, and investigate the effect of preferred orientation on the fracture toughness. VN coatings were deposited on Si (100) substrates by unbalanced magnetron sputtering (UBMS) with two different nitrogen flow rates to prepare coatings with different textures. In the present research, statistical procedures were introduced in the IEIC method to increase the accuracy and reliability of the measured data. The results showed that Gc was texture-dependent, and the Gc values for specimens with random texture and (200) texture were 26.5±2.2 and 46.6±3.7 J/m^2, respectively. The difference in Gc may be attributed to the residual stress. Since the elastic constant of VN in <200> direction is the largest among the three major directions, the residual stress in <200> direction will be higher for the VN coatings under substrate constraint, and thereby increasing Gc. The fracture morphology of the coatings is similar regardless of random or (200) texture, where the crack path consisted of wood-grain R1 and zigzag R2 regions. The VN coatings have a relatively smooth compressive stress gradient, and thus crack initiation may occur due to the edge stress acting at local defects ahead of the edge inside the film. Similar to the fracture behavior in ZrN coatings, the stress distribution due to free edge effect can move with the crack front and consequently drive the main crack propagating stepwise. Compared with TiN and ZrN, VN hard coatings have relatively higher fracture toughness, especially for (200) texture. The existence of R1 region is the major difference in crack path compared with ZrN, where only R2 region was observed.

    Content 摘要....i Abstract....ii Content....iii List of Figures....vi List of Tables....x Chapter 1 Introduction....1 Chapter 2 Literature Review....3 2.1 Characteristics and Applications of VN....3 2.2 Texture Transitions of VN....6 2.2.1 Thermodynamic Theories....6 2.2.2 Kinetic Theories....6 2.2.3 Effect of Texture on Hardness....7 2.2.4 Effect of Deposition Parameters on the Texture of VN Thin Films....8 2.3 Measurement of Fracture Toughness on Thin Films....10 2.3.1 Indentation....10 2.3.2 Buckling....12 2.3.3 Bending....13 2.3.4 Tension....14 2.3.5 IEIC method....16 Chapter 3 Theoretical Basis....18 3.1 Assumptions of the Fracture Model....18 3.2 Energy Release Rate Approach....19 3.3 Griffith’s Criterion Approach [75]....23 3.4 Comparison of the Two Approaches....24 Chapter 4 Experimental Details....25 4.1 Specimen Preparation and Deposition Process....25 4.2 Characterization of Composition and Structure....28 4.2.1 Composition: XPS....28 4.2.2 Crystal Structure and Preferred Orientation: XRD and GIXRD....30 4.2.3 Cross-sectional image and Thickness: FEG-SEM....31 4.2.4 Topography and Cross-sectional Morphology of Fracture Surface: FIB/SEM....31 4.2.5 Surface Roughness: AFM....32 4.3 Characterization of Properties....32 4.3.1 Hardness and Young’s Modulus: NIP....32 4.3.2 Residual Stress....33 4.3.2.1 Overall Residual Stress: LCM....33 4.3.2.2 Local Residual Stress: XRD cos^2αsin^2ψ Method and Layer-by-layer Method....36 4.3.3 Fracture Toughness Measurement....38 4.3.4 Electrical Resistivity: Four Point Probe....39 Chapter 5 Results....41 5.1 Chemical Compositions....44 5.2 Crystal Structure and Texture....44 5.3 Microstructure....49 5.4 Surface Morphology and Roughness....51 5.5 Fracture Morphology....54 5.6 Mechanical Properties....62 5.6.1 Hardness....62 5.6.2 Residual Stress....62 5.6.3 Stored Energy and Fracture Toughness....67 5.7 Electrical Resistivity....69 Chapter 6 Discussion....71 6.1 Uncertainty of Measurement....71 6.1.1 Statistical Criterion for Determining Film Fracture....71 6.1.2 Thermal Stress....72 6.1.3 Estimation of Fracture Toughness....73 6.2 Effect of Texture on VN Coatings....73 6.2.1 Relations between Nitrogen Flow Rates, Textures, and Properties....73 6.2.2 Effect of Texture on Fracture Toughness and Residual Stress....75 6.3 Crack Propagation and Fracture Mechanism....77 6.4 Comparison of Fracture Toughness among Different Hard Coatings....80 Chapter 7 Conclusions....83 References....84 Appendix A Deconvoluted Results of XPS Spectra....91 Appendix B XRD & GIXRD Patterns....93 Appendix C SEM Images....97 Appendix D AFM images....105 Appendix E XRD cos2αsin2ψ....109 Appendix F Statistics of Hand-Cut Si....117

    [1] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of thin films: a critical review, Surf. Coat. Technol., 198 (2005) 74–84.
    [2] S. Zhang, X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films, 520 (2012) 2375–2389.
    [3] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol., 239 (2014) 20-27.
    [4] H.-W. Hsiao, J.-H. Huang, G.-P. Yu, Effect of oxygen on fracture toughness of Zr(N,O) hard coating, Surf. Coat. Technol., 304 (2016) 330-339.
    [5] Y.-F. Chen, Master Thesis, Effect of Composition on the Fracture Toughness of Ti1-xZrxN Hard Coatings, National Tsing Hua University, Taiwan, (R.O.C.), 2014.
    [6] A.B. Mei, R.B. Wilson, D. Li, D.G. Cahill, A. Rockett, J. Birch, L. Hultman, J.E. Greene, I. Petrov, Elastic constants, Poisson ratios, and the elastic anisotropy of VN(001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition, J. Appl. Phys., 115 (2014) 214908.
    [7] M.B. Takeyama, T. Itoi, K. Satoh, M. Sakagami, A. Noya, Application of thin nanocrystalline VN film as a high-performance diffusion barrier between Cu and SiO2, J. Vac. Sci. Technol. B, 22 (2004) 2542.
    [8] X.-P. Qu, M. Zhou, T. Chen, Q. Xie, G.-P. Ru, B.-Z. Li, Study of ultrathin vanadium nitride as diffusion barrier for copper interconnect, Microelectron. Eng., 83 (2006) 236.
    [9] Q. Sun, Z.-W. Fu, Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries, Electrochem. Acta., 54 (2008) 403.
    [10] X. Chu, S. A. Barnett, M. S. Wong, W. D. Sproul, Reactive magnetron sputter deposition of polycrystalline vanadium nitride films, J. Vac. Sci. Technol. A, 14 (1996) 3124.
    [11] P.Eh. Hovsepian, D.B. Lewis, W.-D. Münz, Recent progress in large scale manufacturing of multilayer/superlattice hard coatings, Surf. Coat. Technol., 133-134 (2000) 166-175.
    [12] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, J.E. Greene, Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness, J. Appl. Phys., 62 (1987) 481.
    [13] G. Li, J. Lao, J. Tian, Z. Han, M. Gu, Coherent growth and mechanical properties of AlN/VN multilayers, J. Appl. Phys., 95 (2004) 92-96.
    [14] X. Chu, M.S. Wong, W.D. Sproul, S.A. Barnett, Deposition, structure, and hardness of polycrystalline transition-metal nitride superlattice films, J. Mater. Res., 14/06 (1999) 2500.
    [15] R. Franz, C. Mitterer, Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review, Surf. Coat. Technol., 228 (2013) 1-13.
    [16] N. Bahlawane, D. Lenoble, Vanadium Oxide Compounds: Structure, Properties, and Growth from the Gas Phase, Chem. Vap. Dep., 20/7-8-9 (2014) 299-311.
    [17] U. Schwingenschlögl, V. Eyert, Ann. Phys. (Leipzig), 13/9 (2004) 475-510.
    [18] K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, Influence of oxide phase formation on the tribological behaviour of Ti-Al-V-N coatings, Surf. Coat. Technol., 200 (2005) 1731-1737.
    [19] H. Kindlund, D.G. Sangiovanni, L. Martınez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J.E. Greene, V. Chirita, L. Hultman, Toughness enhancement in hard ceramic thin films by alloy design, APL Mater., 1 (2013) 042104.
    [20] M.E. Uslu, A.C. Onel, G. Ekinci, B. Toydemir, S. Durdu, Me. Usta, L.C. Arslan, Investigation of (Ti,V)N and TiN/VN coatings on AZ91D Mg alloys, Surf. Coat. Technol., 284 (2015) 252-257.
    [21] D.G. Sangiovanni, L. Hultman, V. Chirita, Acta. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration, Acta Metall. Mater., 59 (2011) 2121.
    [22] JCPDS file 65-0437
    [23] Hugh O. Pierson, Handbook of Refractory Carbides and Nitrides, 1st edition, Noyes Publications, 1996.
    [24] Y. Qiu, S. Zhang, B. Li, J-W Lee, D. Zhao, Influence of Nitrogen Partial Pressure and Substrate Bias on the Mechanical Properties of VN Coatings, Procedia Eng., 36 (2012) 217-225.
    [25] H. Okamoto, N-V (Nitrogen-Vanadium), J. Phase Equilib., 22 (2001) 362-362.
    [26] J. Pelleg, L.Z. Zevin, S. Lungo, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films, 197 (1991) 117-128.
    [27] J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Appl. Phys., 30 (1997) 5-12.
    [28] L. Hultman, J.-E. Sundgren, J.E. Greene, D.B. Bergstrom, I. Petrov, High-flux low-energy (≂20 eV) N+2 ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys., 78/9 (1995) 5395.
    [29] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J. Greene, Pathways of atomistic processes on TiN (001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094.
    [30] G. Abadias, Y.Y. Tse, Ph. G. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN deposited by ion beam sputtering, J. Appl. Phys., 99 (2006) 113519.
    [31] C.T. Chen, Y.C. Song, G.-P. Yu, J.-H. Huang, Microstructure and Hardness of HCD Ion Plated Titanium Nitride Film, J. Mater. Eng. Perform., 7 (1998) 324-328.

    [32] W.J. Chou, G.P. Yu, J.H. Huang, Deposition of TiN thin films on Si(100) by HCD ion plating, Surf. Coat. Technol., 140 (2001) 206.
    [33] W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf. Coat. Technol., 149 (2002) 7.
    [34] H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, Nanoindentation studies of single‐crystal (001)‐, (011)‐, and (111)‐oriented TiN layers on MgO, J. Appl. Phys., 80/12 (1996) 6725.
    [35] C.-H. Ma, J.-H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol., 200 (2006) 3868-3875.
    [36] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005) 17-24.
    [37] C.-H. Ma, J.-H. Huang, H. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films, 446 (2004) 184-193.
    [38] J.E. Greene, J.E. Sundgren, L. Hultman, I. Petrov, D.B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 67 (1995) 2928-2930.
    [39] M.-K. Lee, H.-S. Kang, W.-W. Kim, J.-S. Kim, W.-J. Lee, Characteristics of TiN film deposited on stellite using reactive magnetron sputter ion plating, J. Mater. Res., 12 (1997) 2393-2400.
    [40] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol., 201 (2007) 7043-7053.
    [41] J.-H. Huang, C.-H. Ho, G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si (100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38.
    [42] L. Koutsokeras, G. Abadias, Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques, J. Appl. Phys., 111 (2012) 093509.
    [43] H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, G.-P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Mater. Sci. Eng. A-Struct., 500 (2009) 104-108.
    [44] C.-H. Ma, J.-H. Huang, H. Chen, A study of preferred orientation of vanadium nitride and zirconium nitride coatings on silicon prepared by ion beam assisted deposition, Surf. Coat. Technol., 133 (2000) 289.
    [45] H. Gueddaoui, G. Schmerber, M. Abes, M. Guemmaz, J.C. Parlebas, Effects of experimental parameters on the physical properties of non-stoichiometric sputtered vanadium nitrides films, Catalysis Today, 113 (2006) 270.
    [46] G. Farges, E. Beauprez, D. Degout, Preparation and characterization of V-N films deposited by reactive triode magnetron sputtering, Surf. Coat. Technol., 54/55 (1992) 115.
    [47] T. Elangovan, P. Kuppusami, R. Thirumurugesan, V. Ganesan, E. Mohandas, D. Mangalaraj, Nanostructured CrN thin films prepared by reactive pulsed DC magnetron, Mater. Sci. Eng. B, 167 (2010) 17-25.
    [48] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, Toughness measurement of ceramic thin films by two-step uniaxial tensile method, Thin Solid Films, 469 (2004) 233.
    [49] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of ceramic thin films by two-step uniaxial tensile method, Surf. Coat. Technol., 198/1–3 (2005) 2.
    [50] Y.V. Milman, B.A. Galanov, S.I. Chugunova, Plasticity characteristic obtained through hardness measurement, Acta Metall. Mater., 41/9 (1993) 2523.
    [51] T.Y. Tsui, Y.C. Joo, A new technique to measure through film thickness fracture toughness, Thin Solid Films, 401/1-2 (2001) 203.
    [52] B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/plastic indentation damage in ceramics: The median/radial crack system, J. Am. Ceram. Soc., 63/9-10 (1980) 574.
    [53] F. Lofaj, D. Németh, Multiple cohesive cracking during nanoindentation in a hard W-C coating/steel substrate system by FEM, J. Eur. Ceram. Soc., xxx (2017) xxx-xxx.
    [54] C.-C. Yu, C.M. Lee, J.P. Chu, J.E. Greene, P.K. Liaw, Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature, APL Mater., 4 (2016) 116101.
    [55] C. Wang, Y.-C. Liao, J.P. Chu, C.-H. Hsueh, Viscous flow and viscosity measurement of low-temperature imprintable AuCuSi thin film metallic glasses investigated by nanoindentation creep, Mater. Des., 123 (2017) 112-119.
    [56] Z. Chen, B. Cotterell, W. Wang, The fracture of brittle thin films on compliant substrates in flexible displays, Eng. Fract. Mech., 69/5 (2002) 597.
    [57] B. Cotterell, Z. Chen, Buckling and cracking of thin films on compliant substrates under compression, Int. J. Fract., 104/2 (2000) 169.
    [58] S.-J. Yu, S.-C. Li, Y. Ni, H. Zhou, Size dependent morphologies of brittle silicon nitride thin films with combined buckling and cracking, Acta Metall. Mater., 127 (2017) 220-229.
    [59] Standard Test for Plane Strain Fracture Toughness of Metallic Materials, American Society for Testing and Materials (ASTM) E-399, 1987.
    [60] G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, A. Leonhardt, A new method of determining strength and fracture toughness of thin hard coatings, Thin Solid Films, 377-378 (2000) 382-388.
    [61] G. Gille, K. Wetzig, Investigations on mechanical-behavior of brittle wear-resistant coatings Ⅰ. Experimental results, Thin Solid Films, 110/1 (1983) 37.
    [62] G. Gille, Investigations on mechanical-behavior of brittle wear-resistant coatings Ⅱ. Theory, Thin Solid Films, 111/3 (1984) 201.
    [63] Y. Hu, J.-H. Huang, J.-M. Zuo, In situ characterization of fracture toughness and dynamics of nanocrystalline titanium nitride film, Journal of Materials Research, 31/3 (2016) 370-379.
    [64] M.D. Drory, R.H. Dauskardt, A. Kant, R.O. Ritchie, Fracture of synthetic diamond, J. Appl. Phys., 78/5 (1995) 3083.
    [65] K. Jonnalagadda, S.W. Cho, I. Chasiotis, T. Friedmann, J. Sullivan, Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS., J. Mech. Phys. Solids, 56 (2008) 338-401.
    [66] I. Chasiotis, W. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Exp. Mech., 42 (2002) 51-57.
    [67] B. Jang, A.E. Magisa, J.-H. Kim, B. Kim, H.-J. Lee, C.-S. Oh, T. Sumigawa, T. Kitamura, Uniaxial fracture test of freestanding pristine graphene using in situ tensile tester under scanning electron microscope, Extr. Mech. Lett., 14 (2017) 10-15.
    [68] L.B. Freund, S. Suresh, Thin film materials: stress, defect formation, and surface evolution, Cambridge University Press, Cambridge, England, 2003.
    [69] D. Broek, Elementary engineering fracture mechanics, Springer Science & Business Media, 1982.
    [70] N. Alexandre, M. Desmaison-Brut, F. Valin, M. Boncoeur, Mechanical properties of hot isostatically pressed zirconium nitride materials, J. Mater. Sci., 28 (1993) 2385-2390.
    [71] C.-K. Wu, Master, Engineering System and Science, National Tsing Hua University, Taiwan, (R.O.C.), 2016.
    [72] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-Hill New York, 1986.
    [73] R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and fracture mechanics of engineering materials, Wiley New York, 1996.
    [74] M.E. Kipp, G.C. Sih, The strain energy density failure criterion applied to notched elastic solids, Int. J. Solids Struct., 11 (1975) 153-173.
    [75] A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London. Series A, 221 (1921) 163-198.
    [76] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709-4714.
    [77] M.Y. Liao, Y. Gotoh, H. Tsuji, J. Ishikawa, Crystallographic structure and composition of vanadium nitride films deposited by direct sputtering of a compound target, J. Vac. Sci. Technol. A, 22 (2004) 146-150.
    [78] R.T. Haasch, T.-Y. Lee, D. Gall, J.E. Greene, I. Petrov, Epitaxial VN (001) Grown and Analyzed In situ by XPS and UPS. I. Analysis of As-deposited Layers, Surf. Sci. Spectra, 7/3 (2000) 221-232.
    [79] A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G.Q. Lu, Y. Chen, Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V2O5, Chem. Mater., 22 (2010) 914-921.
    [80] Z. Zhao, Y. Liu, H. Cao, J. Ye, S. Gao, M. Tu, Synthesis of VN nanopowders by thermal nitridation of the precursor and their characterization, J. Alloys Compd., 464 (2008) 75-80.
    [81] J.-G. Choi, The surface properties of vanadium compounds by X-ray photoelectron spectroscopy, Appl. Surf. Sci., 148 (1999) 64-72.
    [82] P. Scherrer, Bestimmung der Grösse und der innern Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
    [83] JCPDS file 22-1058
    [84] JCPDS file 33-1439
    [85] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958.
    [86] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
    [87] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
    [88] B.B. He, Two-dimensional X-Ray Diffraction, Wiley, 2011.
    [89] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. Ser. A, Cont. Pap. Math. Phys. Char., 82 (1909) 172-175.
    [90] W. Nix, Mechanical properties of thin films, Metall. Trans. A, 20 (1989) 2217-2245.
    [91] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol., 262 (2015) 40-47.
    [92] V. Hauk, B. Krüger, A new approach to evaluate steep stress gradients principally using layer removal, Mater. Sci. Forum, 347-349 (2000) 80-82.
    [93] J. Kõo, J. Valgur, Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs, Mater. Sci. Forum, 347-349 (2000) 89-94.
    [94] I. Kraus, G. Gosmanová, On X-ray measurements of residual stresses in materials with lattice strain gradient, Czech. J. Phys., 39 (1989) 751-756.
    [95] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, J. Appl. Crystallogr., 40 (2007) 675-683.
    [96] H.K. Tönshoff, J. Plöger, H. Seegers, Determination of residual stress gradients in brittle materials using an improved spline algorithm, Mater. Sci. Forum, 347-349 (2000) 83-88.
    [97] S.M. Sze, VLSI technology, McGraw-Hill, 1983.
    [98] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol., 258 (2014) 211-218.
    [99] H. Oettel, R. Wiedemann, S. Preissler, Residual-stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol., 74-5/1-3 (1995) 273.
    [100] R. Hull, Properties of crystalline silicon, the Institution of Electrical Engineers, London, 1999.
    [101] S.W. King, J.A. Gradner, Intrinsic stress fracture energy measurements for PECVD thin films in the SiOxCyNz:H system, Microelectron. Reliab., 29 (1992) 1085-1103.
    [102] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy, J. Appl. Phys., 72 (1992) 1805.
    [103] T.W. Shield, K.S. Kim, Beam theory models for thin film segments cohesively bonded to an elastic half space, Int. J. Solids Struct., 29 (1992) 1085-1103.
    [104] C. Sarioglu, The effect of anisotropy on residual stress values and modification of Serruys approach to residual stress calculations for coatings such as TiN, ZrN and HfN, Surf. Coat. Technol., 201 (2006) 707-717.

    QR CODE