簡易檢索 / 詳目顯示

研究生: 洪瑞佑
Hong, Ruei-You
論文名稱: 銀線線路之彈-塑性性質研究
On the Study of Elasto-Plastic Properties of Silver Line Circuits
指導教授: 陳文華
Chen, Wen-Hwa
鄭仙志
Cheng, Hsien-Chie
口試委員: 劉德騏
Liu, De-Shin
石正宜
Shih, Cheng-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 奈米壓痕實驗銀線材料彈-塑性性質
外文關鍵詞: Nanoindentation test, Silver line, Elasto-plastic properties
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電子產品追求輕、薄及可撓曲的趨勢下,軟性電子技術近年來發展非常快速。然而,頻繁的彎折常會造成軟性電子產品上的銀線線路之斷裂破壞而導致產品失效。因此,銀線線路之機械性質及力學行為探討,對軟性電子產品可靠度之提昇,極為重要。
    由於銀線線路材料性質的量測受限於其尺寸較小,而不易利用拉伸實驗獲得,雖可藉奈米壓痕實驗測得其硬度及楊氏模數,但對銀線線路之彈-塑性性質仍無法準確獲得。Dao等人(2001)曾提出一材料分析模型,雖可探討楊氏模數範圍在10~210GPa、降伏應力範圍在30~3000MPa以及應變硬化指數範圍在0~0.5間之材料的彈-塑性性質,但因其分析模型為對數形式,易求出不合理的負數材料性質,致使分析模型之應用性受到侷限。為解決上述缺失,胡(2015)針對Dao等人(2001)之材料分析模型進行修正,惜並不涵蓋銀線材料之材料性質範圍。
    本論文主要以胡(2015)之修正型Dao材料分析模型為基礎,建立一適用於銀線線路材料性質範圍之分析流程,並結合奈米壓痕實驗之結果及有限單元模擬,以預測銀線材料於不同外加溶劑比例之彈-塑性材料性質。此外,本論文並利用場發射掃描式電子顯微鏡及穿透式電子顯微鏡觀察銀線材料的表面結構以及其內部元素的組成分布,探究造成銀線材料於不同外加溶劑比例下之彈-塑性材料性質變化的原因。最後,本論文亦探討銀線材料在不同環境溫度下之彈-塑性材料性質。
    本論文研究成果將有助於可撓式軟性電子彎曲疲勞壽命之分析,提昇軟性電子產品之可靠度。


    Under the pursuit of the trend of light, thin, and flexible electronic products, the flexible electronic technology develops fast in recent years. However, the breakage of the silver line on the flexible electronic products are formed because of frequent bends, and it often leads to the failure of the products. Therefore, the discuss for the mechanical properties and behaviors of the silver line is extremely important for raising the reliability of flexible electronic products.
    Owing to the measurement of the material properties for silver line is limited by its small size, it is not easy to obtain it by tensile tests. Although the hardness and Young’s modulus can be measured by nanoindentation tests, the elastoplastic properties of silver line are still not obtained accurately. Dao et al. (2001) proposed a material analysis model. Although it can explore the elastoplastic properties for materials in the range of 10~210 GPa for Young’s modulus, 30~3000 MPa for yield stress and 0~0.5 for strain hardening exponent, the relationships in the analysis model are logarithmic form which are easy to solve unreasonable or negative material properties and result in the limitation of the application for the analysis model. In order to solve the problems, Hu (2015) revised Dao et al.’s material analysis model, but it doesn’t cover the material properties of silver line.
    Based on the modified Dao material analysis model of Hu (2015), an analytical process which is suitable for the range of the material properties of the silver line is constructed in this study and it combines the results of nanoindentation tests and finite element simulation to predict elastoplastic material properties of the silver line with different proportions of solvent added. In addition, the surface structures and the distribution of the inner elements of the silver line are observed by field emission scanning electron microscopy and transmission electron microscopy to find out the reasons which cause the changes of the elastoplastic material properties of the silver line with different proportions of solvent added. Finally, the elastoplastic material properties of the silver line at different temperatures are also discussed in this study.
    The achievement of this research is helpful for the analysis of the bending fatigue life of flexible electronics, and enhances the reliability of flexible electronic products.

    摘要 I 目錄 V 表目錄 VII 圖目錄 IX 第一章、導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 4 第二章、修正型Dao材料分析模型 6 2.1 奈米壓痕參數及材料彈-塑性分析 6 2.2 因次分析 7 2.3 關係式分析與修正公式型式 9 2.4 正/反向分析模型 10 2.4.1 正向分析模型 11 2.4.2 反向分析模型 11 第三章、研究方法 13 3.1 奈米壓痕實驗 13 3.2 場發射掃瞄式電子顯微鏡 14 3.3 穿透式電子顯微鏡 15 3.4 奈米壓痕實驗之有限單元模擬模型 15 第四章、結果與討論 17 4.1 界定銀線材料性質的範圍 17 4.2 關係式擬合 18 4.3 正/反向分析模型 19 4.4 修正型Dao材料分析模型驗證 19 4.5 銀線材料於不同溶劑比例之彈-塑性性質預測 20 4.6 銀線材料的內部結構 21 4.7 銀線材料於不同溫度之彈-塑性性質預測 23 4.8 銀線材料之片電阻量測 24 第五章、結論與未來展望 26 參考文獻 28 附表 32 附圖 46 附錄 74

    [1] Agilent Technologies: How to Select the Correct Indenter Tip, www.agilent.com/find/nanoindenter
    [2] Antunes, J.M.; Fernandes, J.V.; Menezes, L.F. and Chaparro, B.M. (2007): A New Approach for Reverse Analyses in Depth-Sensing Indentation Using Numerical Simulation, Acta Material, Vol. 55, pp. 69-81.
    [3] AZo Materials: Silver-Applications and Properties of Silver, http://www.azom.com/properties.aspx?ArticleID=600
    [4] Cheng, Y.T. and Cheng, C.M. (1998): Relationships Between Hardness, Elastic Modulus, and the Work of Indentation, Applied Physics Letters, Vol. 73, No. 5, pp. 614-616.
    [5] Dao, M.; Chollacoop, N.; Van Vlient, K. J.; Venkatesh, T. A. and Suresh, S. (2001): Computation Modeling of the Forward and Reverse Problem in Instrumented Sharp Indentation, Acta mater., Vol. 49, pp. 3899-3918.
    [6] Deng, X.; Chawla, N.; Chawla, K.K. and Koopman, M. (2004): Deformation Behavior of (Cu, Ag)-Sn Intermetallics by Nanoindentation, Acta Materialia, Vol. 52, pp. 4291-4303.
    [7] Doerner, M.F. and Nix, W.D. (1986): A Method for Interpreting the Data from Depth-Sensing Indentation Instruments, J. Mater. Res., Vol. 1, No. 4, pp. 601-609.
    [8] Draper, N.R. and Smith, H. (1981): Applied Regression Analysis, John Wiley & Sons.

    [9] Field, J.S. and Swain, M.V. (1992): A Simple Predictive Model for Spherical Indentation, J. Mater. Res., Vol. 8, No. 2, pp. 297-306.
    [10] Giannakopoulos, A.E. and Suresh, S. (1999): Determination of Elastoplastic Properties by Instrumented Sharp Indentation, Acta mater., Vol. 40, pp. 1191-1198.
    [11] Hertz, H. (1881): Ueber Die Beruhrung Fester Elastischer Korper, Journal fur die Reine und Angewandte Mathematik, pp.156-171.
    [12] Hosford, W.H. (2010): Mechanical Behavior of Materials (Second Edition), Cambridge University Press.
    [13] Johnson, K.L. (1970): The Correlation of Indentation Experiments, J. Mech. Phys. Solids, Vol. 18, pp. 115-126.
    [14] King, R.B. (1987): Elastic Analysis of Some Punch Problems for a Layered Medium, Int. J. Solids Struct., Vol. 23, pp. 1657-1664.
    [15] Ledwith, D.M.; Aherne, D. and Kelly, J.M. (2010): Approaches to the Synthesis and Characterization of Spherical and Anisotropic Silver Nanomaterials, Nanotechnologies of the Life Sciences.
    [16] Lee, J.; Lee, C. and Kim, B. (2009): Reverse Analysis of Nano-indentation Using Different Representative Strains and Residual Indentation Profiles, Materials and Design, Vol. 30, pp. 3395-3404.
    [17] Li, X.D.; Gao, H.S.; Murphy, C.J. and Caswell, K.K. (2003): Nanoindentation of Silver Nanowires, Nano Letters, Vol. 3, No.11, pp. 1495-1498.
    [18] Ma, D.; Ong, C.W. and Wong, S.F. (2004): New Relationship Between Young’s Modulus and Nonideally Sharp Indentation Parameters, J. Mater. Res., Vol. 19, No. 7, pp. 2144-2151.
    [19] Matbase (2003): Other Non-ferrous Metals-Silver, https://www.matbase.com/material-categories/metals/non-ferrous-metals/other-non-ferrous-metals/material-properties-of-silver.html#properties
    [20] Oliver, W.C. and Pharr, G.M. (1992): An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., Vol. 7, No. 6, pp.1564-1583.
    [21] Qin, F.; Xiang, M. and Wu, W. (2014): The Stress-Strain Relationship of TSV-Cu Determined by Nanoindentation, ACTA Metallurgica Sinica, Vol. 50, pp.722-726.
    [22] Sebastiani, M.; Renzelli, M.; Battaini, P. and Bemporad, E. (2014): Focused Ion Beam and Nanomechanical Tests for High Resolution Surface Characterisation: New Resources for Platinum Group Metals Testing, Platinum Metals Rev., Vol. 58, pp. 3-19.
    [23] Sneddon, I.N. (1965): The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for A Punch of Arbitrary Profile, Int. J. Engng Sci., Vol. 3, pp. 47-57.
    [24] Song, J.M.; Shen Y.L.; Su, C.W.; Lai, Y.S. and Chiu Y.T. (2009): Strain Rate Dependence on Nanoindentation Responses of Interfacial Intermetallic Compounds in Electronic Solder Joints with Cu and Ag Substrates, Materials Transactions, Vol. 50, No. 5, pp. 1231-1234.
    [25] Yang, P.F.; Lai, Y.S.; Jian, S.R.; Chen, J. and Chen, R.S. (2008): Nanoindentation Identifications of Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Derived by Diffusion Couples, Materials Science and Engineering A, Vol. 485, pp. 305-310.
    [26] 魏伯任, (2005) “奈米壓痕實驗應用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測-理論分析與實驗印證”, 國立成功大學機械工程系博士論文。
    [27] 胡軒齊, (2015) “一修正型Dao材料分析模型及其於介金屬化合物彈-塑性性質之探討”, 國立清華大學動力機械系碩士論文。

    無法下載圖示 全文公開日期 2022/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE