研究生: |
吳建瑋 |
---|---|
論文名稱: |
監控單一觀測值之多變量製程變異性管制圖 |
指導教授: |
黃榮臣
Huwang,Longcheen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 單一觀測值 、指數加權移動平均 、品質特性 、正定 、共變異數矩陣 |
外文關鍵詞: | individual observations, exponentially weighted moving average, quality characteristic, positive definite |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多工業製程上,基於產品特性,技術上或是成本上的考量,使得可以用來做為製程管制的樣本數都很小,在樣本數很小的情況下,若要對一多變量製程的變異性做監控,必須能夠導出共變異數矩陣的一個合理估計量。在本文中我們考慮樣本數為1的p個品質特性(quality characteristic)之多變量製程變異性的管制,利用指數加權移動平均(exponentially weighted moving average)的方法,我們建構出一個可用來估計共變異數矩陣的正定(positive definite)矩陣,且利用距離的概念,我們定義出製程共變異數矩陣與管制狀態下共變異數矩陣間是否有顯著差異的指標,進而發展出一個新的管制圖來監控製程整個共變異數矩陣的變化。經由實際例子和統計模擬的方法,證實我們的管制圖比Hawkins (1991)利用迴歸調整變數(regression-adjusted variables)方法所提出的管制圖,在製程變異性的大部分改變上都有比較好的偵測效率。
[1] Alt, F. B. (1980). “Multivariate Quality Control”. The Encyclopedia of Statistical Sciences, eds. S. Kotz, N. L. Johoson, and C. R. Read, New York: John Wiley, pp. 110-122.
[2] Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis (2nd Edition), John Wiley & Sons, New York.
[3] Crowder, S. V. and Hamilton, M. D. (1992). “An EWMA for Monitoring A Process Standard Deviation”. Journal of Quality Technology 24, pp. 12-21.
[4] Chen, G. and Cheng, S. W. and Xie, H. (2001). “Monitoring Process Mean and Variability With One EWMA Chart”. Journal of Quality Technology 33, pp. 223-233.
[5] Healy, J. D. (1987). “A Note on Multivariate CUSUM Procedures”. Technometrics 29, pp. 409-412.
[6] Hawkins D. W. (1981). “A Cusum for a Scale Parameter”. Journal of Quality Technology 13, pp. 228-231.
[7] Hawkins D. W. (1991). “Multivariate Quality Control Based on Regression- Adjusted Variables”. Technometrics 33, pp. 61-75.
[8] Hawkins D. W. (1993). “Regression Adjustment for Variables in Multivariate Quality Control”. Journal of Quality Technology 25, pp. 170-182.
[9] Hotelling, H. (1947). “Multivariate Quality Control”. Techniques of Statistical Analysis, eds. C. Eisenhart, M. W. Hastay, and W. A. Wallis, New York: McGraw-Hill, pp. 118-184.
[10] Jackson, J. E. (1980). “Principal Components and Factor Analysis: Part I Principal Components”. Journal of Quality Technology 13, pp. 46-58.
[11] Joshi, M. and Sprague, K. (1986). “Obtaining and Using Statistical Process Control Limit in the Semiconductor Industry”. Statistical Case Studies for Industrial Process Improvement, eds. V. Czitrom and P. D. Spagon, ASA-SIAM (1997).
[12] Lowry, C. A.,Woodall, W. H., Champ, C. W. and Rigdon, S. E. (1992). “A Multivariate Exponentially Weighted Moving Average Control Charts”. Technometrics 34, pp. 46-53.
[13] Macgregor, J. F. and Harris, T. J. (1993). “The Exponentially Weighted Moving Variance”. Journal of Quality Technology 25, pp. 106-118.
[14] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory, Wiley, New York.
[15] Page, E. S. (1954). “Continuous Inspection Schemes”. Biometrics 41, pp. 100-114.
[16] Roberts, S. W. (1959). “Control Chart Tests Based on Geometric Moving Averages”. Technometrics 1, pp. 239-250.
[17] Tracy, N. D., Young, J. C. and Mason, R. L. (1992). “Multivariate Quality Control Charts for Individual Observations”. Journal of Quality Technology 24, pp. 88-95.
[18] Western Electric (1956). Statistical Quality Control Handbook, Western Electric Corporation, Indianapolis, Ind.
[19] Woodall, W. H. and Ncube, M. M. (1985). “Multivariate CUSUM Quality Control Procedures”. Technometrics 27, pp. 285-292.