研究生: |
陳彥志 Yen-Chih Chen |
---|---|
論文名稱: |
數位微流體系統運用在生醫檢體操控研究 Application of biodiversity manipulation by digital microfluidic system |
指導教授: |
饒達仁
Da-Jeng Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 微液滴傳送技術 、電濕潤效應 、生醫檢體 |
外文關鍵詞: | Droplet transport technology, Electrowetting on dielectrics, biomolecular |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微液滴傳送技術是一種不需要利用傳統微流道,便可控制流體的新技術,具有製程簡便、微量控制、混合容易、成本低廉等優點。本文主要是以陣列式平行雙電極板實驗為架構,利用電濕潤效應(Electrowetting on dielectrics, EWOD),來測試操控生醫檢體的可行性。利用交流電壓(AC)及低頻率的實驗,經由電路設計與分析,進而影響驅動液體的理論機制與作用力大小間的關係。進行不同濃度之生醫檢體驅動測試,以及表面破壞測試實驗,最後探討ㄧ些重要參數對實驗的影響,進而在未來能夠設計ㄧ個效能較佳的微液滴傳送裝置。
Droplet transport technology doesn’t need channels to control fluids compared with traditional microchannel designs. This new concept gives several advantages: such as simple fabrication, easy droplet volume controlling, easy mixing, and low cost. 8×8 electrodes were applied for experiment chips in order to identify the EWOD phenomenon which makes the biomoleculer droplets moving. In order to observe the surface damage after droplet moving, proper AC power and low frequency were used for achieving optimal controlling parameters. The influence of important parameters for designing a better microfluidic transport device were discussed at the end
參考文獻
[1] J. Lee, a.C.-J.K., Surface Tension Driven Microactuation Based on Continuous Electrowetting (CEW). Journal of Microelectromechanical Systems, Jun. 2000. Vol. 9, No. 2: p. pp. 171-180.
[2] S. K. Cho, H.M., J. Fowler, S.-K. Fan, and C.-J. Kim, Splitting a Liquid Droplet for Electrowetting-Based Microfluidics. Int. Mechanical Engineering Congress and Exposition, Nov. 2001: p. IMECE2001/MEMS-23831.
[3] H. Moon, S.K.C., R. L. Garrell, and C.-J. Kim, Low Voltage electrowetting-on-dielectric. Journal of Applied Physics, 2002. Vol. 92, No. 7: p. pp. 4080-4087.
[4] S. K. Cho, S.-K.F., H. Moon, and C.-J Kim, Toward Digital Microfluidic Circuits: Creating, Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation. IEEE Conf. MEMS, Jan. 2002: p. pp. 32-52.
[5] Hyejin Moona, S.K.C.R.L.G.a.C.-J.K., Low voltage electrowetting-on-dielectric. Journal of Applied Physics, 2002. Vol. 92, No. 7: p. pp. 4080-4087.
[6] Vijay Srinivasan, V.P., Phil Paik, and Richard Fair, PROTEIN STAMPING FOR MALDI MASS SPECTROMETRY USING AN ELECTROWETTING-BASED MICROFLUIDIC PLATFORM. Lab-on-a-Chip: Platforms, Devices, and Applications, Conf, 2004.
[7] Vijay Srinivasan, V.P., Phil Paik, and Richard Fair, CLINICAL DIAGNOSTICS ON HUMAN WHOLE BLOOD, PLASMA, SERUM, URINE,SALIVA,SWEAT,AND TEARS ON A DIGITAL MICROFLUIDIC PLATFORM, in Department of Electrical Engineering. 2003.
[8] R.B. Fair, A.K., V. Srinivasan, V. K. Pamula, K.N.Weaver, Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform. Lab-on-a-Chip: Platforms, Devices, and Applications, Conf, Oct. 25-28, 2004.
[9] K.-C. Chuang, a.S.-K.F., Direct Handwriting Manipulation of Droplets by Self-Aligned Mirror-EWOD across a Dielectric Sheet. IEEE Conf. Micro Electro Mechanical Systems, Jan. 2006: p. pp. 174-177.
[10] Benjamin Shapiro, H.M., Robin Garrell, and Chang-Jin "CJ'' Kim, Modeling of Electrowetted Surface Tension for Addressable Microfluidic Systems: Dominant Physical Effects, Material Dependences, and Limiting Phenomena. IEEE Conf. MEMS, Jan. 2003: p. pp. 201-205.