研究生: |
呂明富 Lu, Ming-Fu |
---|---|
論文名稱: |
應用可調式片段線性剛性實現半主動式振動控制 An Adjustable Piecewise-Linear Stiffness Approach for Semi-Active Vibration Control |
指導教授: |
田孟軒
Tien, Meng-Hsuan |
口試委員: |
李銘晃
Li, Ming-Huang 陳任之 Chan, Yum-Ji |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 振動控制 、非線性振動 、片段線性非線性系統 |
外文關鍵詞: | semi-active vibration control, non-linear vibration, piecewise- linear system, vibration amplification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
振動問題在許多工程領域是不可或缺的重要考量。對於多數的動力機械系統或是量測系統,振動現象的產生會導致動力機械系統的結構破壞以及量測系統的量測品質下降進而導致結構安全和量測的誤差,因此振動抑制為上述系統設計階段時的重要議題;反之,對於振動源獵能系統而言,振動的能量會直接影響機械能轉換成電能的效能,因此在激振頻率變化的環境中維持獵能系統的振動能量最大化為能源領域中重要的研究議題。本論文提出一種新式的半主動式振動控制機制,透過系統的位移響應的即時量測及可調控的片段線性剛性,實現各種結構系統於變動激振條件下的振動最佳化。
本論文所提出的振動控制機制,可於既有的結構上外加具有可變間隙的止動器,實現可調控的片段線性剛性,並藉由最佳間隙值的高效運算即時最佳化結構系統的振動振幅。此振動控制機制透過量測結構的位移響應,並將即時量測資訊透過閉迴路控制機制進行片段線性結構的間隙最佳化計算,此控制機制可適應變動的激振條件並即時最佳化結構的振動效能。相較於傳統的半主動式振動控制方法,本論文所提出的技術既不用破壞既有的結構並低成本的優點。
Vibration is an essential and important consideration in many engineering fields. For most power mechanical systems and measurement systems, the vibration phenomenon will lead to structural damage and reduced quality of measurement; thus, vibration mitigation is an important task in the design phase of these systems. On the other hand, vibration amplification in varying excitation conditions is an important research topic in vibration energy harvesting. Magnifying vibration amplitude of the vibration energy harvester can increase the power generation efficiency. To solve the issues mentioned above, a new semi-active vibration control mechanism is proposed in this work to optimize vibration for structural systems in various application domains.
The vibration control mechanism proposed in this paper utilizes adjustable piecewise-linear stiffness to achieve optimized vibration control. The vibration control mechanism uses real-time measurement of the displacement of the structure, and the measured signal is then used to calculate the gap size of the piecewise-linear stiffness that can optimize the vibration response. The proposed control mechanism can adapt to varying excitation conditions. Compared with the traditional semi-active vibration control methods, the proposed mechanism can realize vibration control more efficiently without changing the design of existing structures.
[1] Tsuda, M., et al., Vibration transmission characteristics against
vertical vibration in magnetic levitation type HTS seismic/vibration
isolation device. IEEE Transactions on Applied Superconductivity,
2009. 19 (3): p. 2249 2252.
[2] Zhao, Y. and M. Tomizuka. Modified zero time delay input shaping for industrial robot with flexibility . in Dynamic Systems and Control
Conference . 2017. American Society of Mechanical
[3] Ormondroyd, J., The theory of the dynamic vibration absorber. Trans.,ASME, Applied Mechanics, 1928. 50 : p. 9 22.
[4] Hunt, J.B. and J. C. Nissen, The broadband dynamic vibration
absorber. Journal of Sound Vibration, 1982. 83 (4): p. 573 578.
[5] Zuo, L., J. J. Slotine, and S.A. Nayfeh, Model reaching adaptive
control for vibration isolation. IEEE Transactions on Control Systems
Technology, 2005. 13 (4): p. 611 617.
[6] Nelson, F., Vibration isolation: a review, I. Sinusoidal and random excitations. Shock and Vibration, 1994. 1 (5): p. 485 493.
[7] Cao, H., et al. Research on Quasi zero Stiffness Vibration Isolation Technology of Distribution Transformer . in 2021 IEEE 4th
International Conference on Automation, Electronics and Electrical
Engineering (AUTEEE). 2021.IEEE
[8] Landau, I.D., et al., Adaptive and robust active vibration control . 2016:Springer.
[9] Howard, C., Technologies for the Management of the Acoustic
Signature of a Submarine. Proceedings of the Submarine Institute of
Australia 2010: SIA 5th Biennial Conference, 2010.
[10] Deng, H. x., X. l. Gong, and L. h. Wang, Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart materials and structures, 2006. 15 (5): p.
[11] Nagaya, K., et al., Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto tuning control. Journal of sound and vibration, 1999. 228 (4): p. 773 792.
[12] Walsh, P.L. and J. Lamancusa, A variable stiffness vibration absorber for minimization of transient vibrations. Journal of sound and vibration, 1992. 158 (2): p. 195 211.
[13] Yan, B., et al., Nonlinear electromagnetic shunt damping for nonlinear vibration isolators. IEEE/ASME Transactions on Mechatronics, 2019. 24(4): p. 1851-1860.
[14] Roberson, R.E., Synthesis of a nonlinear dynamic vibration absorber. Journal of the Franklin Institute, 1952. 254(3): p. 205-220.
[15] Oueini, S.S., A.H. Nayfeh, and J.R. Pratt, A nonlinear vibration absorber for flexible structures. Nonlinear Dynamics, 1998. 15: p. 259-282.
[16] Tong, W., Wind power generation and wind turbine design. 2010: WIT press.
[17] Zhang, Y., et al., Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Review of Scientific Instruments, 2016. 87(12): p. 125001.
[18] Toprak, A., MEMS scale CMOS compatible energy harvesters using piezoelectric polymers for sustainable electronics. 2017: University of Miami.
[19] Erturk, A. and D.J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. 2008.
[20] Ayala-Garcia, I.N., et al., A tunable kinetic energy harvester with dynamic over range protection. Smart materials and structures, 2010. 19(11): p. 115005.
[21] Zhou, S., et al., Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 2014. 133: p. 33-39.
[22] Aldraihem, O. and A. Baz, Energy harvester with a dynamic magnifier. Journal of Intelligent Material Systems and Structures, 2011. 22(6): p. 521-530.
[23] Yildirim, T., et al., A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable and Sustainable Energy Reviews, 2017. 71: p. 435-449.
[24] Liu, H., et al., Design and characteristic analysis of magnetostrictive bistable vibration harvester with displacement amplification mechanism. Energy Conversion and Management, 2021. 243: p. 114361.
[25] Waydande, S. and S. Gajjal. Boring Tool Vibration Minimization by Using VE and Composite Materials. in 2015 International Conference on Computing Communication Control and Automation. 2015. IEEE.
[26] Wu, Z., et al., A 6DOF passive vibration isolator using X-shape supporting structures. Journal of Sound and Vibration, 2016. 380: p. 90-111.
[27] Karnopp, D., Active and Semi-Active Vibration Isolation. Journal of Vibration and Acoustics, 1995. 117(B): p. 177-185.
[28] Elias, S. and V. Matsagar, Research developments in vibration control of structures using passive tuned mass dampers. Annual Reviews in Control, 2017. 44: p. 129-156.
[29] Kandasamy, R., et al., A review of vibration control methods for marine offshore structures. Ocean Engineering, 2016. 127: p. 279-297.
[30] Daoutidis, P., M. Soroush, and C. Kravaris, Feedforward/feedback control of multivariable nonlinear processes. AIChE Journal, 1990. 36(10): p. 1471-1484.
[31] Elliott, S.J. and T.J. Sutton, Performance of feedforward and feedback systems for active control. IEEE Transactions on Speech and Audio Processing, 1996. 4(3): p. 214-223.
[32] Liu, L., et al., Industrial feedforward control technology: a review. Journal of Intelligent Manufacturing, 2019. 30: p. 2819-2833.
[33] Batista, E.L.O., M.R. Barghouthi, and E.M. de Oliveira Lopes, A novel adaptive scheme to improve the performance of feedforward active vibration control systems. IEEE/ASME Transactions on Mechatronics, 2021. 27(4): p. 2322-2332.
[34] Landau, I.D., M. Alma, and T.-B. Airimitoaie, Adaptive feedforward compensation algorithms for active vibration control with mechanical coupling. Automatica, 2011. 47(10): p. 2185-2196.
[35] Zhu, Q., et al., Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method. smart materials and structures, 2017. 26(4): p. 047003.
[36] Fuller, C.C., S. Elliott, and P.A. Nelson, Active control of vibration. 1996: Academic press.
[37] Jalili, N., A Comparative Study and Analysis of Semi-Active Vibration-Control Systems. Journal of Vibration and Acoustics, 2002. 124(4): p. 593-605.
[38] Chatterjee, S., Optimal active absorber with internal state feedback for controlling resonant and transient vibration. Journal of Sound and Vibration, 2010. 329(26): p. 5397-5414.
[39] Wang, X. and B. Yang, Transient vibration control using nonlinear convergence active vibration absorber for impulse excitation.Mechanical Systems and Signal Processing, 2019. 117: p. 425-436.
[40] Herold, S. and D. Mayer. Adaptive piezoelectric absorber for active vibration control. in Actuators. 2016. MDPI.
[41] Jalili, N. and D.W. Knowles IV, Structural vibration control using an active resonator absorber: modeling and control implementation. Smart Materials and structures, 2004. 13(5): p. 998.
[42] Nagarajaiah, S., Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short‐term Fourier transform. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 2009. 16(7‐8): p. 800-841.
[43] Harland, N.R., B.R. Mace, and R.W. Jones, Adaptive-passive control of vibration transmission in beams using electro/magnetorheological fluid filled inserts. IEEE Transactions on Control Systems Technology, 2001. 9(2): p. 209-220.
[44] Cottone, F., et al., Piezoelectric buckled beams for random vibration energy harvesting. Smart materials and structures, 2012. 21(3): p. 035021.
[45] Vocca, H., et al., Kinetic energy harvesting with bistable oscillators. Applied Energy, 2012. 97: p. 771-776.
[46] Tien, M.-H. and K. D’Souza, Method for controlling vibration by exploiting piecewise-linear nonlinearity in energy harvesters. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020. 476(2233): p. 20190491.
[47] Veney, J. and K. D’Souza, Frequency tunable electromagnetic vibration energy harvester using piecewise linear nonlinearity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023. 479(2277): p. 20230207.
[48] Tien, M.-H., K.-Y. Lee, and S.-C. Huang, Analyzing the backbone curve of piecewise-linear non-smooth systems using a generalized bilinear frequency approximation method. Mechanical Systems and Signal Processing, 2023. 204: p. 110765.
[49] Shaw, S.W. and P.J. Holmes, A periodically forced piecewise linear oscillator. Journal of Sound and Vibration, 1983. 90(1): p. 129-155.