研究生: |
陳通泰 Tran, Thong-Thai |
---|---|
論文名稱: |
用於氦光譜的倍頻外腔二極管激光器 A frequency-doubled External Cavity Diode Laser for Helium Spectroscopy |
指導教授: |
王立邦
Wang, Li-Bang |
口試委員: |
劉怡維
Liu, Yi-Wei 褚志崧 Chuu, Chih-Sung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 用於氦光譜的倍頻外腔二極管激光器 |
外文關鍵詞: | A frequency-doubled External Cavity Diode Laser for Helium Spectroscopy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了執行從亞穩態到nD態的原子氦光譜,需要用波長為535至552 nm的激光源激發氦原子池。 因此,此類項目的基本初始步驟是開發激光源。 考慮之後,將由半導體激光二極管泵浦的外腔激光器組裝成Litrow構造。 外部腔二極管激光器用於發射約1070 nm的紅外光束,然後通過倍頻工藝與大量的非線性晶體轉換為535 nm的綠光束。 在我們的實驗中使用了摻Mg的全鈮酸鋰晶體。 第一步,通過執行原子碘的吸收光譜測試綠色激光器
In order to perform the spectrum of atomic Helium from a metastable state to nD states, the Helium atom cell is required to be excited by the laser source with the wavelength from 535 to 552 nm. Therefore, the foundationally initial step for this kind of project is developing a laser source. After consideration, an external cavity laser pumped by a semiconductor laser diode was assembled in Litrow configuration. The External Cavity Diode Laser is used to emit an infrared beam, at around 1070 nm, which then is converted into a green beam, at 535 nm, by the frequency-doubled process with a bulk of the nonlinear crystal. The Mg-doped congruent Lithium Niobate crystal was used in our experiment. As the first step, the green laser is tested by performing the absorption spectrum of the atomic iodine.
[1] W. Lenth, R. M. Macfarlane, W. E. Moerner, F. M. Schellenberg, R. M. Shelby and G. C. Bjorklund, "High-density frequency-domain optical recording," Proc. SPIE, vol. 695, p. 216–223, 1987.
[2] J. C. Owens, "Compact Blue Green Lasers Technical Digest," Washington: Optical Society of America, vol. 6, pp. 8-9, 1992.
[3] W. E. Glenn and G. J. Dixon, "Bright future projected for lasers in electronic cinemas," Laser Focus World, vol. 29, p. 73–80, 1993.
[4] J. B. Marling, J. Nilsen, L. C. West and L. L. Wood, "An ultrahigh-Q isotropically sensitive optical filter employing atomic resonance transitions," Appl. Phys. Lett., vol. 50, p. 610–614, 1979.
[5] W. M. Itano, "Atomic ion frequency standards," Proc. IEEE., vol. 79, p. 936–942, 1991.
[6] G. L. Trainor, "DNA sequencing, automation, and the human genome," Anal. Chem., vol. 62, p. 418–426, 1990.
[7] Y. Kaneda and S. Kubota, "CW Solid-state ultraviolet laser for optical disk mastering application," IEEE J. Sel. Top. Quantum Electron., vol. 3, p. 35–39, 1997.
[8] P. J. Kitchin and F. M. Newcomer, "Feasibility of a frequency-doubled, pulsed GaAs laser diode source for calibration of photomultipliers at the Sudbury Neutrino Observatory," in 1993 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, USA, 1994.
[9] A. Banerjee, D. Das, and V. Natarajan, "Precise frequency measurements of atomic transitions by use of a Rb-stabilized resonator," Opt. Lett., vol. 28, p. 1579–1589, 2003.
[10] D. Das and V. Natarajan, "Hyperfine spectroscopy on the 6P3/2 state of 133Cs using coherent control," Europhys. Lett., vol. 72, p. 740–746, 2005.
[11] U. D. Rapol, A. Wasan, and V. Natarajan, "Loading of a Rb magneto-optic trap from a getter source," Phys. Rev. A, vol. 64, 2001.
[12] S. Brandt, A. Nagel, R. Wynands, and D. Meschede, "Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz," Phys. Rev. A, vol. 56, p. 1063–1066, 1997.
[13] U. D. Rapol, A. Wasan, and V. Natarajan, "Observation of sub-natural linewidths for cold Rb atoms in a magneto-optic trap," Europhys. Lett., vol. 61, p. 53–59, 2003.
[14] S. M. Iftiquar, G. R. Karve, and V. Natarajan, "Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to Doppler averaging," Phys. Rev. A, vol. 77, 2008.
[15] S. R. Chanu, K. Pandey, V. Bharti, A. Wasan, and V. Natarajan, "Polarization-rotation resonances with subnatural widths using a control laser," Europhys. Lett., vol. 106, 2014.
[16] L. Muanzuala, H. Ravi, K. Sylvan and V. Natarajan, "Measuring the linewidth of a stabilized diode laser," Curr. Sci., vol. 109, pp. 765-767, 2015.
[17] B.E.A. Saleh and M.C. Teich, "Wiley Series in Pure and Applied Optics," in Fundamentals of Photonics, New York, Wiley-Interscience Publication, 1991.
[18] W.W. Chow, S.W. Koch and M Sargent, Semiconductor-Laser Physics, New York: Springer-Verlag, 1994.
[19] W.T. Silfvast, Laser Fundamentals First Edition, Cambridge: Cambridge University Press, 1996.
[20] https://www.rfwireless-world.com/Articles/Laser-basics-and-Laser-types.html.
[21] J.H. Eberly and P.W. Millonni, Lasers, New York: Wiley-Interscience Publication, 1991.
[22] H. R. Telle, "Stabilization and modulation schemes of laser diodes for applied spectroscopy," Spectrochemica Acta, vol. 15, no. 5, 1993.
[23] L.A. Coldren and S.W. Corzine, "Diode lasers and Photonic Integrated circuit," in Wiley Series in Microwave and Optical Engineering, New York, Wiley-Interscience Publishcation, 1995.
[24] T.E. Barber, P. E. Walters, M. W. Wensing and J. D. Wineforder, "Diode laser atomic absorption using a new reference method," Spectrochemica Acta, vol. 46B, pp. 1009-1014, 1991.
[25] J. Karlsson, "Cerium as a quantum state probe for rare-earth qubits in a crustal," doctoral thesis, 2015.
[26] W. Demtroder, Laser spectroscopy: Basic concepts and instrumentation Third Edition, New York: Springer-Verlag, 2003.
[27] A. Banerjee, D. Das and V. Natarajan, "Precise frequency measurements of atomic transitions by use of a Rb-stabilized resonator," Opt. Lett., vol. 28, p. 1579–1589, 2003.
[28] M.G. Littman and H.J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," Appl. Opt., vol. 17, no. 14, p. 2224–2227, 1978.
[29] L. Muanzuala, H. Ravi, K. Sylvan and V. Natarajan, "Measuring the linewidth of a stabilized diode laser," Curr. Sci., vol. 109, no. 4, pp. 765-767, 2015.
[30] A. L. Schawlow and C. H. Townes , "Infrared and optical masers," Phys. Rev., vol. 112, 1958.
[31] C. Henry, "Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers," J. Lightwave Technol., vol. 4, p. 288, 1986.
[32] C. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum Elect., vol. 18, p. 259, 1982.
[33] R. Paschotta, "Derivation of the schawlow-townes linewidth of lasers," RP Photonics Consulting GmbH , 2010.
[34] P. Goldberg, P. W. Milonni, and B. Sundaram, "Theory of the fundamental laser linewidth," Phys. Rev. A, vol. 44, p. 1969, 1991.
[35] P. Goldberg, P. W. Milonni, and B. Sundaram, "Theory of the fundamental laser linewidth. II," Phys. Rev. A, vol. 44, p. 4556, 1991.
[36] C. Ye, Tunable External Cavity Diode Lasers, New Jersey: World Scientific Publishing, 2004.
[37] L.A. Coldren and S.W. Corzine, "Diode lasers and Photonic Integrated Circuits," in Wiley Series in Microwave and Optical Engineering, New York, Wiley-Interscience, 1995.
[38] K.S. Repasky, J. D. Williams and J.L. Carlsten, "Tunable external-cavity diode laser based on integrated waveguide structures," Opt. Eng., vol. 42, no. 8, pp. 2229-2234, 2003.
[39] H. R. Telle, "Stabilization and modulation schemes of laser diodes for applied spectroscopy," Spectrochemica Acta, vol. 15, no. 5, 1993.
[40] T.A. Heumier and J.L. Carlstein, "Mode hopping in semiconductor lasers," http:// www.ilxlightwave.com/ appnotes/ mode hopping, ILX Lightwave Application Note.
[41] Yao-Chin Huang, "Laser spectroscopy of low-lying levels in atomic Lithium," doctoral thesis, National Tsinghua university, 2017.
[42] W. P. Risk, T. R. Gosnell and A. V. Nurmikko, Compact Blue-Green Lasers, Cambridge: Cambridge U. Press, 2003.
[43] R. L. Sutherland, D. G. McLean and S. Kirkpatrick, Handbook of Nonlinear Optics Second Edition, New York: Marcel Dekker, 2003.
[44] T. Volk, M. Wohlecke, N. Rubinina, A. Reichert and N. Razumovski, "Optical damage resistant impurities (Mg, Zn, In, Sc) in lithium niobate," Ferroelectrics Rev., vol. 183, pp. 291-300, 1996.
[45] T. Volk and M. Wohlecke, "Optical damage resistance in lithium niobate crystals," Ferroelectrics Rev., vol. 1, p. 195–262, 1998.
[46] J. P. Remeika and A. A. Ballman, "Flux Growth CZOCHRALSKI Growth and Hydrothermal Synthesis of Lithium Metagallate Single Crystals," Appl. Phys. Lett., vol. 5, p. 180, 1964.
[47] J. C. Owens, "Compact visible lasers in reprographics," Washington: Optical Society of America, vol. 6, pp. 8-9, 1992.
[48] N. B. Ming, J. F. Hong and D. Feng, "The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals," J. Mater. Sci., vol. 17, p. 1663–1670, 1982.
[49] M. Yamada, N. Nada, M. Saitoh and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for effecient blue second-harmonic generation," Appl. Phys. Lett., vol. 62, p. 435–436, 1993.
[50] K. Lengyel, Z. S. Szaller, A. Peter, K. Polgar and L. Kovacs, "Microscopic and Raman Spectroscopic Investigation of the Domain Structures in LiNbO3:Y:Mg Crystals," Ferroelectrics Rev., vol. 368, pp. 3-11, 2008.
[51] G. A. Magel, M. M. Fejer and R. L. Byer, "Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3," Appl. Phys. Lett., vol. 56, p. 108–110, 1990.
[52] D. H. Jundt, G. G. Magel, M. M. Fejer and R. L. Byer, "Periodically poled LiNbO3 for high-efficiency second-harmonic generation," Appl. Phys. Lett., vol. 59, p. 2657–2659, 1991.
[53] J. Webjorn, V. Pruneri, P. St J. Russell and D. C. Hanna, "55% conversion efficiency to green in bulk quasi-phase-matching lithium niobate," Electron. Lett., vol. 31, p. 669–671, 1995.
[54] V. Pruneri, P. G. Kazansky, J. Webjorn, P. St J. Russell and D. C. Hanna, "Self-organized light-induced scattering in periodically poled lithium niobate," Appl. Phys. Lett., vol. 67, p. 1957–1959, 1995.
[55] M. Taya, M. C. Bashaw and M. M. Fejer, "Photorefractive effects in periodically poled ferroelectrics," Opt. Lett., vol. 21, p. 857–859, 1996.
[56] Thorlabs, "Optics/ E-O devices/ Periodically Poled Lithium Niobate (PPLN)-Tutorial," https://www.thorlabs.com/catalogpages/693.pdf.
[57] C. J. Hawthorn, K. P. Weber, and R. E. Scholten, "Littrow configuration tunable external cavity diode laser with fixed direction output beam," Rev. Sci. Instrum., vol. 72, p. 4477–4479, 2001.
[58] Power Technology Incorporated, "Specification sheet of Ridge waveguide Laser - GaAs Semiconductor Laser Diode LD1567".
[59] T. Hof, D. Fick and H.J. Jansch, "Application of diode lasers as a spectroscopic tool at 670 nm," in Opt. commun., Elsevier, 1995.
[60] H.M von Bergmann, "Laser techniques class notes," University of Stellenbosch, 2005.
[61] F. J. Kontur, I. Dajani, Yalin Lu and R. J. Knize, "Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN," Opt. Express, vol. 15, pp. 12882-12889, 2007.
[62] G. K. Samanta, S. C. Kumar, K. Devi and M. Ebrahim-Zadeh, "55%-Efficient, 13-W, Single-Pass SHG of a CW Yb-Fiber Laser in a Double-Crystal Scheme," in CLEO/QELS: 2010 Laser Science to Photonic Applications, San Jose, CA, USA, 2010.
[63] Yi Gan, "Study of Green Solid State Lasers based on MgO:PPLN crystals for Laser Display Applications," doctoral thesis, Huazhong University of Science and Technologies, 2012.
[64] C. M. Steenkamp, G .P. Nyamuda and E.G. Rohwer, "Design and development of an external cavity diode laser system for laser cooling and spectroscopy," in The 51st SAIP Annual Conference, South Africa, 2006.
[65] S. P. Smith, F. Zarinetchi and S. Ezekiel, "Narrow-linewidth stimulated Brillouin fiber laser and applications," Opt.Lett., vol. 16, no. 6, 1991.
[66] J. L. Boschung and P. A. Robert, "High-accuracy measurement of the linewidth of a Brillouin fiber ring laser: Electron," Opt. Lett., vol. 30, pp. 1488-1489, 1994.
[67] D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann and H. Welling, "External cavity laser diode with 40 nm continuous tuning range around 825 nm," Opt. Commun., vol. 130, no. 1-3, pp. 81-84, 1996.
[68] K. B. MacAdam, A. Steinbach and C. Wieman, "A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," American Journal of Physics, vol. 60, no. 12, pp. 1098-1110, 1992.
[69] G. Genty, A. Grohn, H. Talvitie, M. Kaivola and H. Ludvigsen, "Analysis of the linewidth of a grating-feedback GaAlAs laser," IEEE J. Quantum Electron, vol. 36, no. 10, 2000.
[70] L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig and T.W. Hansch, "A compact grating-stabilised diode laser system for atomic physics," Opt. Commun. , vol. 117, pp. 541-549, 1995.
[71] T. Erneux, A. Gavrielides, K. Green and B. Krauskopf, "Analytical theory of external cavity modes of a semiconductor laser with phase conjugate feedback," in The International Society for Optical Engineering, USA, 2004.
[72] S. Stry, L. Hilderbrandt and J. Sacher, "Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping," in The International Society for Optical Engineering, USA, 2004.
[73] A. H. Ali, S. N. A. Wahid, H. A. Mohammed, "Analysis of Laser Linewidth Measurements Based on Fabry Perot Interferometer System," Int. J. Eng, vol. 12, no. 6, 2012.