簡易檢索 / 詳目顯示

研究生: 劉佳鑫
CHIA-HSIN, LIU
論文名稱: 原核生物蛋白質功能之系統分析
Functions of Proteins as Evolutionary Variables in Prokaryote Systematics Analysis
指導教授: 許宗雄
唐傳義
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 104
中文關鍵詞: 系統演化
外文關鍵詞: Evolutionary, Systematics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細菌常因環境中溫度、酸鹼度、養分與離子濃度的變化,而遭逢到生存的壓力,為了在逆境中繼續生存、繁衍,細菌會藉由水平基因轉移 (Horizontal gene transfer、HGT) 的方式,由其他細菌處獲得新的蛋白質,以對抗生存環境的變化。由分子演化的觀點來看,愈重要、愈不可取代的蛋白質,在演化的過程中愈不會改變;站在結構生物學與網路生物學的角度,參與愈多交互作用的蛋白質,其結構和序列也會愈穩定。本研究以細菌的最小基因組為基礎,從430株細菌中篩選出40個各細菌均具有的蛋白質序列,進行系統性的分析,並且提出兩種可能的機制,探討在環境的變動之下,天擇 (Natural selection) 如何作用於細菌的蛋白質序列。
    以16S rRNA將細菌分類之結果,與40個蛋白質將細菌分類之結果,在門的層次上分析比較後發現,40個細菌間共通的蛋白質中,有7個分別是SecY、LepA、MG_419、PrfA、DnaK、Obg、GyrA等,其分析結果與16S rRNA的較為相近,而根據其他文獻的研究,猜測是這些蛋白質因參與較多的分子間交互作用,使其序列與結構在不同的細菌中也能保持相似性;而AspS、DnaB、DnaJ、Deoxyribonuclease、Fus、GltX、GyrB、IleS、InfB、LueS、Map、MetS、 MG_024、MG_046、MG_222、MG_262、MG_311、MG_329、NusA、ParC、ParE、PheS、Pth、RpL16、 RpL20、Rps9、RpsC、SerS、TdhF、ThrS、TrpS、ValS等,其分析之結果與16S rRNA的較為不相近,而這些蛋白質大多都與細菌在使用能量方面有關係,猜測是細菌以生存而最佳化其能量利用為由,在彼此之間頻繁地交換這些蛋白質的基因,因此使這些蛋白質序列能在細菌間保持相似性。
    原核生物的統一生命樹 (Universal Tree of Life),展現了物種之間的演化關係。隨著分子生物技術的進步,以及基因體時代的來臨,原核生物的演化分類法也與時俱進,然而,即使目前已可在基因體的層次上進行分析,對於水平基因轉移所扮演的腳色輕重,仍有很大爭議。如果水平基因轉移確實是個很重要的因素,則舊有僅考慮垂直演化的分類法 (如 16S rRNA),可能就不是非常完備的分類方式。


    Chinese Abstract ……..………………………………………………………………….. I English Abstract ……..…………………………………………………………………. III Table of Contents ………………………………………………………………………...V List of Tables ………………………………………………………………………...…VII List of Figures ……………………………………………………………………...….VIII Abbreviations ……………………………………………………………..………….….X Introduction ………………...…………………………………………………………….1 Materials and Methods …………………………………….…………………………..…6 2.1 Protein Sequence Data …………………………………………………………..6 2.2 Database Construction …………………………………………………………..6 2.3 Pairwise Alignment ……………………………………………………………...6 2.4 Identification of Orthologous Proteins …………………………………………..7 2.5 Multiple Alignments and Distance Matrix Construction ………………………..7 2.6 Phylogenetic Analysis and Supertree Construction ……………………………..7 2.7 Tree Analysis ………………………………………………………………….…8 2.8 Bootstrap Analysis ………………………………………………………………8 2.9 Parameters and Matrix …………………………………………………………..8 Results ………………………………..………………………………………………….10 3.1 General Description ……………………………………………………………10 3.2 Analysis of Neighbor-Join Tree ………………………………………………..12 3.3 Trees with Clear Clad ………………………………………………………….12 3.4 Trees without Clear Clad ………………………………………………………16 Discussion …………………………..…………………………………………………...25 Conclusion ……………………………..…………………....…………………………..32 References ………………………………………………………………………………33 Figures and Tables …………………………….………………………………………...38 Appendix I ……………………………………………………………………………...84

    [1] Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life: John Murray, 1859.
    [2] Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002;52 (Pt 3):1043-7.
    [3] Rossello-Mora R. Opinion: the species problem, can we achieve a universal concept? Syst Appl Microbiol 2003;26 (3):323-6.
    [4] Rossello-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001;25 (1):39-67.
    [5] Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996;60 (2):407-38.
    [6] Gevers D, Vandepoele K, Simillon C, Van de Peer Y. Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol 2004;12 (4):148-54.
    [7] Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000;405 (6784):299-304.
    [8] Cohan FM. Bacterial species and speciation. Syst Biol 2001;50 (4):513-24.
    [9] Woese CR. Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 2000;97 (15):8392-6.
    [10] Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer. Mol Biol Evol 2002;19 (12):2226-38.
    [11] Kolsto AB. Dynamic bacterial genome organization. Mol Microbiol 1997;24 (2):241-8.
    [12] Kunisawa T. Identification and chromosomal distribution of DNA sequence segments conserved since divergence of Escherichia coli and Bacillus subtilis. J Mol Evol 1995;40 (6):585-93.
    [13] Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet 2001;17 (10):589-96.
    [14] Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, 3rd, Smith HO, Venter JC. Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 2006;103 (2):425-30.
    [15] Zheng J, Cannon JF. Synthetic lethal screening in protein phosphatase pathways. Methods Mol Biol 1998;93:293-303.
    [16] Barbour L, Xiao W. Synthetic lethal screen. Methods Mol Biol 2006;313:161-9.
    [17] Bernhardt TG, de Boer PA. Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol Microbiol 2004;52 (5):1255-69.
    [18] Jordan IK, Rogozin IB, Wolf YI, Koonin EV. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 2002;12 (6):962-8.
    [19] Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR. The phylogeny of prokaryotes. Science 1980;209 (4455):457-63.
    [20] DeLong EF, Pace NR. Environmental diversity of bacteria and archaea. Syst Biol 2001;50 (4):470-8.
    [21] Smith Z, McCaig AE, Stephen JR, Embley TM, Prosser JI. Species Diversity of Uncultured and Cultured Populations of Soil and Marine Ammonia Oxidizing Bacteria. Microb Ecol 2001;42 (3):228-37.
    [22] Bennasar A, Rossello-Mora R, Lalucat J, Moore ER. 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 1996;46 (1):200-5.
    [23] Rogall T, Wolters J, Flohr T, Bottger EC. Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol 1990;40 (4):323-30.
    [24] Hillis DM, Dixon MT. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 1991;66 (4):411-53.
    [25] Dixon MT, Hillis DM. Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Mol Biol Evol 1993;10 (1):256-67.
    [26] Yap WH, Zhang Z, Wang Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 1999;181 (17):5201-9.
    [27] Santos SR, Ochman H. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 2004;6 (7):754-9.
    [28] Koonin EV, Wolf YI. Evolutionary systems biology: links between gene evolution and function. Curr Opin Biotechnol 2006;17 (5):481-7.
    [29] Akashi H. Metabolic economics and microbial proteome evolution. Bioinformatics 2003;19 Suppl 2:II15.
    [30] Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 2001;1:8.
    [31] Gorecki P, Tiuryn J. Inferring phylogeny from whole genomes. Bioinformatics 2007;23 (2):e116-22.
    [32] Qi J, Luo H, Hao B. CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res 2004;32 (Web Server issue):W45-7.
    [33] Wolf YI, Rogozin IB, Grishin NV, Koonin EV. Genome trees and the tree of life. Trends Genet 2002;18 (9):472-9.
    [34] Moret BM, Warnow T. Advances in phylogeny reconstruction from gene order and content data. Methods Enzymol 2005;395:673-700.
    [35] Suyama M, Bork P. Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 2001;17 (1):10-3.
    [36] Tatusova TA, Karsch-Mizrachi I, Ostell JA. Complete genomes in WWW Entrez: data representation and analysis. Bioinformatics 1999;15 (7-8):536-43.
    [37] Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 2005;33 (Database issue):D294-6.
    [38] NCBI. ftp://ncbi.nlm.nih.gov/blast/executables.
    [39] Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ. Universal trees based on large combined protein sequence data sets. Nat Genet 2001;28 (3):281-5.
    [40] Li KB. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics 2003;19 (12):1585-6.
    [41] DeSantis TZ, Jr., Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 2006;34 (Web Server issue):W394-9.
    [42] Retief JD. Phylogenetic analysis using PHYLIP. Methods Mol Biol 2000;132:243-58.
    [43] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 2004;5 (2):150-63.
    [44] Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996;12 (4):357-8.
    [45] Moran NA. Microbial minimalism: genome reduction in bacterial pathogens. Cell 2002;108 (5):583-6.
    [46] Koonin EV. Horizontal gene transfer: the path to maturity. Mol Microbiol 2003;50 (3):725-7.
    [47] Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 2003;1 (2):127-36.
    [48] Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 2005;39:309-38.
    [49] Kunisawa T. Gene arrangements characteristic of the phylum Actinobacteria. Antonie Van Leeuwenhoek 2007.
    [50] Ueda K, Yamashita A, Ishikawa J, Shimada M, Watsuji TO, Morimura K, Ikeda H, Hattori M, Beppu T. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res 2004;32 (16):4937-44.
    [51] Brown JR, Gentry D, Becker JA, Ingraham K, Holmes DJ, Stanhope MJ. Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens. EMBO Rep 2003;4 (7):692-8.
    [52] Liu Y, Harrison PM, Kunin V, Gerstein M. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 2004;5 (9):R64.
    [53] Scholten JC, Culley DE, Brockman FJ, Wu G, Zhang W. Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: Involvement of an ancient horizontal gene transfer. Biochem Biophys Res Commun 2007;352 (1):48-54.
    [54] Heizer EM, Jr., Raiford DW, Raymer ML, Doom TE, Miller RV, Krane DE. Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Mol Biol Evol 2006;23 (9):1670-80.
    [55] Dohm JC, Vingron M, Staub E. Horizontal gene transfer in aminoacyl-tRNA synthetases including leucine-specific subtypes. J Mol Evol 2006;63 (4):437-47.
    [56] Ryckelynck M, Giege R, Frugier M. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Biochimie 2005;87 (9-10):835-45.
    [57] Feng L, Sheppard K, Namgoong S, Ambrogelly A, Polycarpo C, Randau L, Tumbula-Hansen D, Soll D. Aminoacyl-tRNA synthesis by pre-translational amino acid modification. RNA Biol 2004;1 (1):16-20.
    [58] Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN, Nierhaus KH. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 2006;127 (4):721-33.
    [59] Youngman EM, Green R. Ribosomal translocation: LepA does it backwards. Curr Biol 2007;17 (4):R136-9.
    [60] Li W, Schulman S, Boyd D, Erlandson K, Beckwith J, Rapoport TA. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol Cell 2007;26 (4):511-21.
    [61] Saparov SM, Erlandson K, Cannon K, Schaletzky J, Schulman S, Rapoport TA, Pohl P. Determining the conductance of the SecY protein translocation channel for small molecules. Mol Cell 2007;26 (4):501-9.
    [62] Cao TB, Saier MH, Jr. The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 2003;1609 (1):115-25.
    [63] Van den Berg B, Clemons WM, Jr., Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. X-ray structure of a protein-conducting channel. Nature 2004;427 (6969):36-44.
    [64] Jekely G. Did the last common ancestor have a biological membrane? Biol Direct 2006;1:35.
    [65] Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta 1998;1400 (1-3):29-43.
    [66] Blinkova A, Hervas C, Stukenberg PT, Onrust R, O'Donnell ME, Walker JR. The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential. J Bacteriol 1993;175 (18):6018-27.
    [67] Studwell-Vaughan PS, O'Donnell M. Constitution of the twin polymerase of DNA polymerase III holoenzyme. J Biol Chem 1991;266 (29):19833-41.
    [68] Stukenberg PT, Studwell-Vaughan PS, O'Donnell M. Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J Biol Chem 1991;266 (17):11328-34.
    [69] Kukimoto-Niino M, Murayama K, Inoue M, Terada T, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S. Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8. J Mol Biol 2004;337 (3):761-70.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE