研究生: |
江郁嫻 |
---|---|
論文名稱: |
Capacity Planning and Migration for Semiconductor Fabrication Industry under Demand Uncertainties 建構不確定情況下半導體晶圓製造廠於產能擴充與相互支援之最佳化模式 |
指導教授: | 簡禎富 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 產能規劃 、決策分析 、半導體產業 、需求不確定性 、馬可夫決策過程 、產能支援 |
外文關鍵詞: | Capacity planning, Migration, Markov decision process, Decision analysis, Semiconductor manufacturing, Demand uncertainty |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體產業中,產能的取得通常是透過採購機台,而一台機台依功能差異使得價格自1至13百萬美金不等,且從下訂單到實際產出,其歷程大約需要兩季的時間;另一方面,若公司欲投入新製程並量產,則需花費10至20億美金建造潔淨室。然而,在此產業中,需求變動極度地劇烈且製程更迭快速,企業迫使在這種不確定的情況下對於未來的需求做出產能建置的決策。
產能建置問題必須考慮多個製程間需求的關聯性,因為市場需求通常維持在一定的水準而這些需求會分散到不同的製程。另一方面,在實際的產業環境中,無論是製程間需求的關係或是潔淨室裡製程間產能的相互支援關係都是相當複雜的,而這些都使得產能建置問題更加地困難。
本研究提出產能馬可夫決策模式,其主要架構為馬可夫鍊以及動態規劃。其中,需求行為被視為隨機過程,而本研究將歷史資料分析的結果應用在預估未來的需求,以切割成多個不同的情境。該模式最後會提供產能建置的最佳解以及未來的期望需求短缺損失、剩餘損失與產能相互支援報酬,而這些結果都可以當作決策者在進行產能擴充時的決策依據。最後,本研究以一實際案例來說明所提出之模式,其驗證結果顯示該模式所提出的產能規劃結果相較於該公司原本的產能規劃在總損失上較低以及產能相互支援報酬較高。
Ahmed, S. (2002), “Semiconductor tool planning via multi-stage stochastic programming,” in: Proceedings of the 2002 international conference on modeling and analysis of semiconductor manufacturing, USA: Tempe, Arizona, pp. 153-157.
Ahmed, S., King, A.J., and Parija, G. (2003), “A multi-stage stochastic integer programming approach for capacity expansion under uncertainty,” Journal of Global Optimization, vol. 26, pp. 3-24.
Ahmed, S. and Sahinidis, N.V. (2003), “An approximation scheme for stochastic integer programs arising in capacity expansion,” Operations Research, vol. 51, no. 3, pp. 461–471.
Ahmed, S. and Garcia, R., (2004), “Dynamic capacity acquisition and assignment under uncertainty,” Annals of Operations Research, vol.124, pp. 267-283.
Andersson, A. E., Hjorth, P., De Marė, L. and Thelander, A. L. (1979), Water resources planning and management in advanced economies: the case study of western Skåne, Sweden-the background report, International Institute for Applied Systems Analysis, Laxenburg, Austria.
Barahona, F., Bermon, S., Gunluk, O. and Hood, S. (2001), Robust capacity planning in semiconductor manufacturing, IBM (Research Report RC22196).
Bhatnagar, S., E. Fernandez-Gaucherand et al. (1999), “A Markov decision process model for capacity expansion and allocation,” Proceedings of the 38th IEEE Conference on Decision and Control.
Birge, J.R. (1985), “Decomposition and partitioning methods for multistage stochastic linear programs,” Operations Research, vol. 33, pp. 989–1007.
Çakanyildirim, M. and Roundy, R.O. (1999), Demand Forecasting and Capacity Planning in the Semiconductor Industry, Technical Paper 1229, SORIE, Cornell University, Ithaca, NY 14850, USA.
Çakanyildirim, M. and R. O. Roundy (2002), “SeDFAM: semiconductor demand forecast accuracy model,” IIE Transactions, vol. 34, no. 5, pp. 449-465.
Chen, Z.-L., S. Li et al. (2002), “A scenario-based stochastic programming approach for technology and capacity planning,” Computers & Operations Research, vol. 29, no. 7, pp. 781-806.
Chien, Chen-Fu and L. Chen (2007), “Using Rough Set Theory to Recruit and Retain High-Potential Talents for Semiconductor Manufacturing,” IEEE Transactions on Semiconductor Manufacturing, 20(4), 528-541.
Chou, Y.-C., Cheng, C.-T., Yang, F.-C., and Liang, Y.-Y. (2007), “Evaluating alternative capacity strategies in semiconductor manufacturing under uncertain demand and price scenarios,” International Journal of Production Economics, vol. 105, no. 2, pp. 591–606.
Christie, R. M. E. and S. D. Wu (2002), “Semiconductor capacity planning: stochastic modelingand computational studies,” IIE Transactions, vol. 34, no. 2, pp. 131-143.
Davis, M. H. A., M. A. H. Dempster et al. (1987), “Optimal Capacity Expansion under Uncertainty,” Advances in Applied Probability, vol. 19, no. 1, pp. 156-176.
Douglas C. Montgomery and George C. Runger (2007), Applied Statistics and Probability for Engineers, 4th Edition, Wiley, New York.
Dupačová, J., Consigli, G. and Wallace, S. W. (2000), “Scenarios for multi-stage stochastic programs,” Annals of Operations Research, vol. 100, pp. 25-53
Eppen, G. D., R. K. Martin et al. (1989), “A Scenario Approach to Capacity Planning,” Operations Research, vol. 37, no. 4, pp. 517-527.
Erlenkotter, D., Sethi, S. and Okada, N. (1981), Planning for surprise: water resources development under supply and demand uncertainty. I. The general model, International Institute for Applied Systems Analysis, Laxenburg, Austria.
Fordyce, K. and Sullivan, G. (1994), A Dynamically Generated Rapid Response Capacity Planning Model for Semiconductor Fabrication Facilities, Impact of Emerging Technologies on Computer Science and Operations Research. Kluwer Publishing, Dordrecht, pp 103-127.
Geng, N. and Z. Jiang (2008), “A review on strategic capacity planning for the semiconductor manufacturing industry,” International Journal of Production Research, vol. 99999, no. 1, pp. 1-17.
Gordon E. Moore (1965), “Cramming more components onto integrated circuits,” Electronics, vol.38, no. 8.
Hood, S. J., S. Bermon et al. (2003), “Capacity planning under demand uncertainty for semiconductor manufacturing,” IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 2, pp. 273-280.
Høyland, K. and Wallace, S. W. (2001), “Generating scenario trees for multi-stage decision problems,” Management Science, vol. 47, no. 2, pp. 295-307.
Huang, K. and Ahmed, S., (2005), The value of multi-stage stochastic programming in capacity planning under uncertainty, [online], Available from: http://www2.isye.gatech.edu/ sahmed/SCPP9.pdf.
Karabuk, S. (2001), Coordinating capacity decisions for the supply chain in high-tech industry, Dissertation (PhD), Lehigh University.
Karabuk, S. and Wu, S.D. (2003), “Coordinating strategy capacity planning in the semiconductor industry,” Operation Research, vol.51, no. 6, pp. 839-849.
Leachman, R., Ding, S. and Chen-Fu Chien (2007), “Economic Efficiency Analysis of Wafer Fabrication,” IEEE Transactions on Automation Science and Engineering, 4(4), 501-512.
Meixell, M. J. and S. D. Wu (2001), “Scenario analysis of demand in a technology market using leading indicators,” IEEE Transactions on Semiconductor Manufacturing, vol. 14, no. 1, pp. 65-75.
Mulvey, J. M. (1996), “Generating scenario for the Towers Perrin investment system,” Interfaces, vol. 26, pp. 1–13.
Pflug, G. Ch. (2001), “Scenario tree generation for multiperiod financial optimization by optimal discretization,” Mathematical Programming, Series B. vol. 89, pp. 251–271.
R.A. Howard (1960), Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA.
R. Bellman (1957), “A Markovian decision process,” Journal of Mathematics and Mechanics, vol. 6, pp. 679–684.
Ridsdale, D. (2000), FSA reports good wafer demand for tables companies, www. semiconductorfabtech.com.
Sarah, M. R. (2003), “Capacity expansion with lead times and autocorrelated random demand,” Naval Research Logistics, vol. 50, no. 2, pp. 167-183.
Swaminathan, J. M. (2000), “Tool capacity planning for semiconductor fabrication facilities under demand uncertainty,” European Journal of Operational Research , vol. 120, no. 3, pp. 545-558.
Swaminathan, J. M. (2002), “Tool procurement planning for wafer fabrication facilities: a scenario-based approach,” IIE Transactions, vol. 34, no. 2, pp.145-155.
White, D. J. (1993), “A Survey of Applications of Markov Decision Processes,” The Journal of the Operational Research Society, vol. 44, no. 11, pp. 1073-1096.
Woonghee Tim Huh, R. O. R. M. k. (2006), “A general strategic capacity planning model under demand uncertainty,” Naval Research Logistics, vol. 53, no. 2, pp. 137-150.
Wu, J.-Z., Chien, C.-F. (2008), “Modeling strategic semiconductor assembly outsourcing decisions and an empirical study,” OR Spectrum.
Wu, S. D., M. Erkoc et al. (2005), “Managing Capacity in the High-Tech Industry: A Review of Literature,” The Engineering Economist, vol. 50, no. 2, pp. 125-158.