研究生: |
范姜興 Fan-Chiang, Hsing. |
---|---|
論文名稱: |
優化飛灰及工業汙泥的固化過程 Optimization of Solidification Process of Fly Ash and Industrial Sludge |
指導教授: |
王竹方
Wang, Chu-Fang |
口試委員: |
王清海
黃素珍 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 固化 、工業污泥 、飛灰 、水泥添加物 |
外文關鍵詞: | solidification, industrial sludge, fly ash, cement additives |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如何安全處置或再利用含有重金屬的固體廢棄物是一個重要議題。使用固定化處理技術可以有效的達成這項目標。固定化處理技術主要分為兩類,熱處理及利用水泥的固化穩定化效果去包覆固體廢棄物。其中利用水泥系材料處理含有重金屬固體廢棄物是現行最常使用的方法,因為廢棄物會被匣限在緻密且耐久的水泥試體中,以達到與外在環境隔絕的效果。本篇研究收集了不同來源的固體廢棄物,如紙管工廠的飛灰;污水處理廠、玻璃製造廠、半導體廠及半導體封測廠的污泥。飛灰是一種波特蘭材料,具有類似水泥的性質,可以被利用在污泥的固化反應中。在這篇研究中,我們使用四種改良方法去優化固化反應,如烘乾及磨碎污泥、混和不同種汙泥、增加水泥的含量及加入水泥添加物。將經過上述方法處理後的固體廢棄物與水泥混和製成試體,並讓試體養護十四天的時間。在第三天、第七天及第十四天會利用萬能抗壓機對試體進行無圍抗壓測試。利用抗壓測試的結果來評估所用改良方法的成效。結果顯示本篇研究的改良方法可以增加抗壓強度,達到優化固化反應的效果。此外,我們也對這些改良方法的成本效益進行評估,以得到淨利潤等資料。透過本篇研究,我們可以在試體強度及成本效益中取得平衡,得到適合的試體。
Safe disposal or recycle of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to address this task. Cementitious material treatments which have been applied for decades as a final treatment procedure prior to the hazardous waste disposal or recycle are attractive immobilization treatments because the heavy metals could be encapsulated in their dense and durable matrix. In the present work, solid waste such as fly ash and industrial sludge was sampled from different sources. Fly ash was utilized in the solidification of industrial sludge since fly ash has cement-like characteristics. Modifications, such as drying raw industrial sludge, mixing different kinds of sludge samples after dried, increasing cement content, and adding cement additives were conducted to determine their effects on solidification performance. The solidified matrix was cured for 3, 7, and 14 days prior for its physical test. The results show that these modifications can improve the compressive strength of solidified matrix. The cost effect was also carried out to evaluate the profits of treated samples. According to the results, suitable matrix can be produced based on the balance between compressive strength and profits.
1. Diaz, E.I., E.N. Allouche, and S. Eklund, Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 2010. 89(5): p. 992-996.
2. 事業廢棄物申報統計. 2018.09.07; Available from: https://erdb.epa.gov.tw/DataRepository/Statistics/LitterDeclareStatisticNew.aspx?topic1=%u6c61%u67d3%u9632%u6cbb&topic2=%u5730&subject=%u5ee2%u68c4%u7269.
3. Akcil, A., et al., A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production, 2015. 86: p. 24-36.
4. Bolan, N., et al., Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? Journal of Hazardous Materials, 2014. 266: p. 141-166.
5. Koptsik, G.N., Modern approaches to remediation of heavy metal polluted soils: A review. Eurasian Soil Science, 2014. 47(7): p. 707-722.
6. Fu, F. and Q. Wang, Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 2011. 92(3): p. 407-418.
7. del Valle-Zermeno, R., et al., Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Management, 2013. 33(3): p. 621-627.
8. Liu, A., et al., A review of municipal solid waste environmental standards with a focus on incinerator residues. International Journal of Sustainable Built Environment, 2015. 4(2): p. 165-188.
9. Khale, D. and R. Chaudhary, Mechanism of geopolymerization and factors influencing its development: a review. Journal of materials science, 2007. 42(3): p. 729-746.
10. Benassi, L., et al., Chemical stabilization of municipal solid waste incineration fly ash without any commercial chemicals: first pilot-plant scaling up. ACS Sustainable Chemistry & Engineering, 2016. 4(10): p. 5561-5569.
11. del Valle-Zermeño, R., et al., Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: environmental impact assessment. Journal of hazardous materials, 2014. 266: p. 132-140.
12. Naik, T.R., T.S. Friberg, and Y.M. Chun, Use of pulp and paper mill residual solids in production of cellucrete. Cement and Concrete Research, 2004. 34(7): p. 1229-1234.
13. Yoon-moon, C. and T.R. Naik, Concrete with paper industry fibrous residuals: mixture proportioning. ACI materials journal, 2005. 102(4): p. 237.
14. Singh, M. and R. Siddique, Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. Journal of Cleaner Production, 2016. 112: p. 620-630.
15. Lancellotti, I., et al., Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Management, 2010. 30(4): p. 673-679.
16. Vespa, M., et al., Spectroscopic investigation of Ni speciation in hardened cement paste. Environmental science & technology, 2006. 40(7): p. 2275-2282.
17. Vespa, M., et al., Co speciation in hardened cement paste: a macro-and micro-spectroscopic investigation. Environmental science & technology, 2007. 41(6): p. 1902-1908.
18. Guo, B., et al., The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. Journal of environmental management, 2017. 193: p. 410-422.
19. Ucaroglu, S. and I. Talinli, Recovery and safer disposal of phosphate coating sludge by solidification/stabilization. Journal of environmental management, 2012. 105: p. 131-137.
20. Çoruh, S., O.N. Ergun, and T.-W. Cheng, Treatment of copper industry waste and production of sintered glass-ceramic. Waste management & research, 2006. 24(3): p. 234-241.
21. Guo, B., et al., Immobilization mechanism of Pb in fly ash-based geopolymer. Construction and Building Materials, 2017. 134: p. 123-130.
22. Li, X., et al., Accelerated carbonation of municipal solid waste incineration fly ashes. Waste management, 2007. 27(9): p. 1200-1206.
23. Malviya, R. and R. Chaudhary, Study of the treatment effectiveness of a solidification/stabilization process for waste bearing heavy metals. Journal of Material Cycles and Waste Management, 2004. 6(2): p. 147-152.
24. Cerbo, A.A.V., et al., Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives. Environmental Science and Pollution Research, 2017. 24(2): p. 1748-1756.
25. Chen, J., S.-c. Kou, and C.-s. Poon, Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites, 2012. 34(5): p. 642-649.
26. Camiletti, J., A. Soliman, and M. Nehdi, Effects of nano-and micro-limestone addition on early-age properties of ultra-high-performance concrete. Materials and structures, 2013. 46(6): p. 881-898.
27. 徐文慶、張蕙蘭、黃契儒、廖錦聰, 造紙工業紙渣污泥灰及其汽電共生焚化灰資源化利用, in 第十一屆廢棄物處理技術研討會論文集. 1996. p. 151-159.
28. Munir, M.T., et al., Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 2018. 96: p. 64-75.
29. Woolard, M., The use of a modified fly ash as an adsorbent for lead. Water SA, 2000. 26(4): p. 531-536.
30. Audry, S., et al., Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution, 2004. 132(3): p. 413-426.
31. Conesa, H.M., et al., In situ heavy metal accumulation in lettuce growing near a former mining waste disposal area: implications for agricultural management. Water, air, and soil pollution, 2010. 208(1-4): p. 377-383.
32. Xiao, Y., et al., Vitrification of bottom ash from a municipal solid waste incinerator. Waste Management, 2008. 28(6): p. 1020-1026.
33. Jian-Min, Z., et al., Soil heavy metal pollution around the Dabaoshan mine, Guangdong province, China. Pedosphere, 2007. 17(5): p. 588-594.
34. Komárek, M., A. Vaněk, and V. Ettler, Chemical stabilization of metals and arsenic in contaminated soils using oxides–a review. Environmental Pollution, 2013. 172: p. 9-22.
35. Hu, H.-Y., et al., Comparison of CaO’s effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China. Chemosphere, 2013. 93(4): p. 590-596.
36. Su, Y., et al., Effects of municipal solid waste incineration fly ash on solidification/stabilization of Cd and Pb by magnesium potassium phosphate cement. Journal of environmental chemical engineering, 2016. 4(1): p. 259-265.
37. Batchelor, B., Overview of waste stabilization with cement. Waste management, 2006. 26(7): p. 689-698.
38. Sullivan, C., et al., Disposal of water treatment wastes containing arsenic—a review. Science of the Total Environment, 2010. 408(8): p. 1770-1778.
39. Wang, J., et al., Remediation of mercury contaminated sites–a review. Journal of hazardous materials, 2012. 221: p. 1-18.
40. Gougar, M., B. Scheetz, and D. Roy, Ettringite and C S H Portland cement phases for waste ion immobilization: A review. Waste management, 1996. 16(4): p. 295-303.
41. Shi, C. and R. Spence, Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes. Critical Reviews in Environmental Science and Technology, 2004. 34(4): p. 391-417.
42. Conner, J.R. and S.L. Hoeffner, A critical review of stabilization/solidification technology. Critical Reviews in Environmental Science and Technology, 1998. 28(4): p. 397-462.
43. Chen, Q., et al., Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste management, 2009. 29(1): p. 390-403.
44. Asavapisit, S., S. Naksrichum, and N. Harnwajanawong, Strength, leachability and microstructure characteristics of cement-based solidified plating sludge. Cement and Concrete Research, 2005. 35(6): p. 1042-1049.
45. Shi, H.-s. and L.-l. Kan, Characteristics of municipal solid wastes incineration (MSWI) fly ash–cement matrices and effect of mineral admixtures on composite system. Construction and Building Materials, 2009. 23(6): p. 2160-2166.
46. Stegemann, J. and Q. Zhou, Screening tests for assessing treatability of inorganic industrial wastes by stabilisation/solidification with cement. Journal of Hazardous Materials, 2009. 161(1): p. 300-306.
47. Glasser, F., Fundamental aspects of cement solidification and stabilisation. Journal of Hazardous Materials, 1997. 52(2-3): p. 151-170.
48. Zhang, X., X.-q. Wang, and D.-f. Wang, Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review. Sustainability, 2017. 9(11): p. 2020.
49. Randall, P. and S. Chattopadhyay, Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. Journal of hazardous materials, 2004. 114(1-3): p. 211-223.
50. Malviya, R. and R. Chaudhary, Leaching behavior and immobilization of heavy metals in solidified/stabilized products. Journal of hazardous materials, 2006. 137(1): p. 207-217.
51. Shi, H.-S. and L.-L. Kan, Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. Journal of hazardous materials, 2009. 164(2-3): p. 750-754.
52. Hamood, A., J.M. Khatib, and C. Williams, The effectiveness of using Raw Sewage Sludge (RSS) as a water replacement in cement mortar mixes containing Unprocessed Fly Ash (u-FA). Construction and Building Materials, 2017. 147: p. 27-34.
53. Skripkiūnas, G., S. Vasarevičius, and V. Danila, Immobilization of copper indium selenide solar module waste in concrete constructions. Cement and Concrete Composites, 2018. 85: p. 174-182.
54. Hills, C.D. and S.J. Pollard, The influence of interference effects on the mechanical, microstructural and fixation characteristics of cement-solidified hazardous waste forms. Journal of Hazardous Materials, 1997. 52(2-3): p. 171-191.
55. Qian, G., et al., Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Journal of hazardous materials, 2006. 129(1-3): p. 274-281.
56. Husnain, A., et al., Immobilization in cement mortar of chromium removed from water using titania nanoparticles. Journal of environmental management, 2016. 172: p. 10-17.
57. Bonavetti, V., et al., Limestone filler cement in low w/c concrete: a rational use of energy. Cement and Concrete Research, 2003. 33(6): p. 865-871.
58. Duval, R., Effect of ultrafine particles on heat of hydration of cement mortars. Materials Journal, 2002. 99(2): p. 138-142.
59. Li, H., et al., Microstructure of cement mortar with nano-particles. Composites Part B: Engineering, 2004. 35(2): p. 185-189.
60. Gutteridge, W.A. and J.A. Dalziel, Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cement and Concrete Research, 1990. 20(5): p. 778-782.
61. Poppe, A.-M. and G. De Schutter, Cement hydration in the presence of high filler contents. Cement and Concrete Research, 2005. 35(12): p. 2290-2299.
62. Kadri, E.-H. and R. Duval, Hydration heat kinetics of concrete with silica fume. Construction and Building Materials, 2009. 23(11): p. 3388-3392.
63. Roy, A. and F.K. Cartledge, Long-term behavior of a portland cement-electroplating sludge waste form in presence of copper nitrate. Journal of hazardous materials, 1997. 52(2-3): p. 265-286.
64. Sweeney, R., C. Hills, and N. Buenfeld, Investigation into the carbonation of stabilised/solidified synthetic waste. Environmental technology, 1998. 19(9): p. 893-902.
65. Roy, A., et al., Solidification/stabilization of hazardous waste: evidence of physical encapsulation. Environmental science & technology, 1992. 26(7): p. 1349-1353.
66. Gray, A.L., Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst, 1985. 110(5): p. 551-556.
67. Fernández, B., et al., Direct analysis of solid samples by fs-LA-ICP-MS. TrAC Trends in Analytical Chemistry, 2007. 26(10): p. 951-966.
68. Holá, M., et al., LA-ICP-MS heavy metal analyses of fish scales from sediments of the Oxbow Lake Certak of the Morava River (Czech Republic). Environmental geology, 2009. 58(1): p. 141.
69. Chen, Y., 利用 LA-ICP-MS 對於魚鱗元素組成之研究. 清華大學生醫工程與環境科學系學位論文, 2014: p. 1-109.
70. Pan, Z., W. Wei, and F. Li, LA ICP-MS in microelectronics failure analysis. Journal of Materials Science: Materials in Electronics, 2011. 22(10): p. 1594.
71. NWR-193 Laser Ablation System. Available from: http://www.nwrlasers.com/laserablation/nwr193/.
72. Agilent Technologies Inc. - 7500a ICP-MS. Available from: http://www.speciation.net/Database/Instruments/Agilent-Technologies-Inc/7500a-ICPMS-;i234.
73. Madaeni, S. and S. Samieirad, Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination, 2010. 257(1-3): p. 80-86.
74. Singh, P., et al., Techniques for characterization of polyamide thin film composite membranes. Desalination, 2011. 282: p. 78-86.
75. Kim, E.-S., et al., Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). Journal of membrane Science, 2009. 344(1-2): p. 71-81.
76. Dadvari, P., 合成 [Ba] _ (1-x)[Ca] _x [Co] _ (0.2)[Fe] _ (0.8) O_ (3-δ)(BCCF) 為陰極, CuO 滲透效果為 P 型 SOFC; Synthesis of [Ba] _ (1-x)[Ca] _x [Co] _ (0.2)[Fe] _ (0.8) O_ (3-δ)(BCCF) as the cathode and CuO-infiltration effect on it for P-type SOFC. 2018, National Central University.
77. Chang, C.Y., et al., A sequential extraction method measures the toxic metal content in fly ash from a municipal solid waste incinerator. Journal of the Chinese Chemical Society, 2005. 52(5): p. 921-926.
78. Naik, T., S. Singh, and A. Hassaballah. Effects of water to cementitious ratio on compressive strength of cement mortar containing fly ash. in Proceedings of the fourth international conference on fly ash, Silica fume, slag, and natural Pozzolans in concrete, Istanbul, Turkey. 1992.
79. Hu, N., et al., R&D on glass fiber reinforced epoxy resin composites for superconducting Tokamak. SpringerPlus, 2016. 5(1): p. 1564.
80. Aguwa, J.I., Effect of hand mixing on the compressive strength of concrete. Leonardo Electronic Journal of Practices and Technologies, 2010. 17: p. 59-68.
81. Kappel, A., L.M. Ottosen, and G.M. Kirkelund, Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash. Construction and Building Materials, 2017. 157: p. 1199-1205.
82. Singh, L., et al., Beneficial role of nanosilica in cement based materials–A review. Construction and Building Materials, 2013. 47: p. 1069-1077.
83. 小型廢污泥乾燥機簡介. Available from: http://www.ctf.url.tw/CTF02.html.