簡易檢索 / 詳目顯示

研究生: 林于廷
Lin, Yu-Ting
論文名稱: 利用異位及異種表現的方式探討衣藻細胞核版粒線體呼吸鏈相關基因在人類細胞中之表現
Allotopic and xenotopic expression of respiratory subunits in human cells with nuclear genes from Chlamydomonas reinhardtii encoding cognate mitochondrial proteins
指導教授: 高茂傑
Kao, Mou-Chieh
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 66
中文關鍵詞: 粒線體衣藻異位表現異種表現
外文關鍵詞: mitochondria, Chlamydomonas reinhardtii, Allotopic expression, xenotopic expression
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內共生的發生使得粒線體的基因轉移到細胞核內。然而,仍然有一些基因依然保留在粒線體的基因體(genome)內,這些基因表現的蛋白涉及氧化磷酸化的反應。這些蛋白包含了complex I中的ND1~ND6和ND4L次單元蛋白,complex III的cytochrome c,complexIV的Cox1~Cox3次單元蛋白,以及complex V的ATP6和ATP8次單元蛋白。有趣的是,衣藻的粒線體基因體內缺乏nd3、nd4l、cox2、cox3、atp6以及atp8等基因。先前的文獻指出衣藻的nd3、nd4l、cox2、cox3以及atp6等基因已經轉移到細胞核中,其中cox2基因還分離為兩個獨立的基因。
    在這個研究當中,異位及異種表現的策略被應用在評估這些方法對於治療粒線體疾病的可能性。當衣藻的ND4L、ND3、ATP6、COX3及COX2a的粒線體標的訊號(mitochondrial targeting signal , MTS)與enhanced green fluorescent protein (EGFP)結合後,可以成功的將結合蛋白運送進入HeLa和HEK293細胞的粒線體內。然而,當衣藻的ND4L及ND3的MTS分別和它們的人類同源蛋白結合後,異位運送結合蛋白進入粒線體的效果卻很有限。為了加強運送蛋白的效率,異種表現衣藻的細胞核版本之全長粒線體相關蛋白被運用來探討粒線體蛋白在人類細胞之運送。藉由這種方式,運送complex I的ND4L次單元至粒線體的效果大幅的改善。儘管如此,當HIV的轉錄活化子( the transactivator of the transcription, TAT)片段結合至衣藻轉殖基因的前方時,這種新的設計對於改善蛋白運送進入粒線體內的幫助並不大。然而,當親水性的EGFP蛋白被結合到衣藻ND4L次單元的C端時,這個方法卻可以有效降低運送蛋白的疏水性並且增加運送蛋白至粒線體的能力。本篇研究證實衣藻的ND4L次單元在人類的細胞中擁有被運送進入粒線體的能力,以及蛋白的疏水性對於運送至粒線體的過程中扮演了一個非常重要的角色。


    The endosymbiotic event leads mitochondrial genes to be translocated into nuclei. However, there are still a few genes conserved in the mitochondrial genome which code for proteins involved in oxidative phosphorylation. These proteins include ND1~ND6 and ND4L subunits of complex I, cytochrome c of complex III, Cox1~Cox3 subunits of complex IV, ATP6 and ATP8 subunits of complex V. Interestingly, the mitochondrial genome in Chlamydomonas reinhardtii lacks nd3, nd4l, cox2, cox3, atp6 and atp8 genes. Previous report suggested that nd3, nd4l, cox2, cox3 and atp6 were transfered to nuclei in C. reinhardtii, and cox2 was further divided into two independent nuclear genes.
    In this study, allotopic and xenotopic expression strategies were adopted to evaluate the possibilities of applying these methods as treatment concepts for mtDNA diseases. When the mitochondrial targeting signal (MTS) of ND4L, ND3, ATP6, COX3, and COX2a of C. reinhardtii was fused with enhanced green fluorescent proteins (EGFP), the resultant fusion proteins were successfully imported into mitochondria of HeLa and HEK293 cells. However, when the MTSs of the ND4L and ND3 were individually fused with its human homologue, only a limited mitochondrial targeting was observed. To improve the import efficiency, xenotopic expression of several full-length C. reinhardtii nuclear-encoded mitochondrial proteins were directly applied for mitochondrial targeting studies in human cells. By this approach, a significant improvement of mitochondrial import was observed in the targeted complex I ND4L subunit. Nevertheless, when the transactivator of transcription (TAT) region from the HIV was added in front of these constructed C. reinhardtii transgenes, the new designs did not show a significant improvement on mitochondrial targeting. However, when the hydrophilic EGFP protein was added at the C-terminus of the full-length C. reinhardtii ND4L subunit, the process could decrease the hydrophobicity of the importing protein effectively and improve the ability of the mitochondrial targeting. In this report, we proved that the C. reinhardtii ND4L subunit possesses the capability of the mitochondrial targeting in human cells and the hydrophobicity of the importing proteins plays an important role for mitochondrial targeting.

    中文摘要 i Abstracts ii Abbreviations vi Introduction 1 Materials and methods 13 Results 19 1. Isolation of Chlamydomonas reinhardtii genes and construction of expression vectors 19 2. Expression of algal mitochondrial-targeted signal fused EGFP in human cells 19 3. Allotopic expression of human recoded ND3 and ND4L with the corresponding algal leader peptide 20 4. Xenotopic expression of C. reinhardtii nuclear encoded mitochondrial proteins in human cells 21 5. Expression of TAT- algal nuclear encoded proteins in human cells 22 6. Fusion of hydrophilic EGFP to an entire algal nuclear-encoded ND4L 23 Discussion 25 Table 30 Figure 35 Figure 1. Sequence alignments of ND4L polypeptides from various species. 35 Figure 2. The mitochondrial targeting efficiency of C. reinhardtii ND4LMTS, ND3MTS, ATP6MTS, COX3MTS, and COX2aMTS fused with EGFP in HeLa and HEK293 cells. 39 Figure 3. The cleavage of mitochondrial targeting sequence from various C. reinhardtii nuclear-encoded mitochondrial proteins in HeLa cell. 40 Figure 4. The subcellular location of H. sapiens ND3 and ND4L subunits fused with the corresponding C. reinhardtii mitochondrial targeting sequence in HeLa cells and HEK293 cells. 42 Figure 5. The subcellular location of various C. reinhardtii nuclear-encoded mitochondrial proteins in HeLa cells and HEK293 cells. 46 Figure 6. The subcellular location of various C. reinhardtii nuclear-encoded mitochondrial proteins fused with the HIV TAT peptide in the N-terminus in HeLa and HEK293 cells. 49 Figure 7. Expression of EGFP fused full-length nuclear-encoded C. reinhardtii mitochondrial protein ND4L or ND3 in the HeLa and HEK293 cells. 51 Figure 8. Immunoblotting analyses of C. reinhardtii ND4L-EGFP and C. reinhardtii ND3-EGFP imported into mitochondria in the HeLa and HEK293 cells. 52 Figure 9. Mesohydrophobicity and hydrophobicity plot of mitochondrial proteins from C. reinhardtii and H. sapiens. 53 Reference 54 Appendixes 60

    1. Yamada, Y. and H. Harashima, Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Advanced Drug Delivery Reviews, 2008. 60(13-14): p. 1439-1462.
    2. Scheffler, I.E., Metabolic Pathways Inside Mitochondria. Mitochondria, 2002: p. 246-272.
    3. Reichert, A.S. and W. Neupert, Mitochondriomics or what makes us breathe. Trends in Genetics, 2004. 20(11): p. 555-562.
    4. Kadenbach, B., Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2003. 1604(2): p. 77-94.
    5. Smeitink, J., L. van den Heuvel, and S. DiMauro, The genetics and pathology of oxidative phosphorylation. Nat Rev Genet, 2001. 2(5): p. 342-352.
    6. Vogel, R.O., J.A.M. Smeitink, and L.G.J. Nijtmans, Human mitochondrial complex I assembly: A dynamic and versatile process. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2007. 1767(10): p. 1215-1227.
    7. Johannsen, D.L. and E. Ravussin, The role of mitochondria in health and disease. Current Opinion in Pharmacology, 2009. 9(6): p. 780-786.
    8. Gray, M.W., G. Burger, and B.F. Lang, Mitochondrial Evolution. Science, 1999. 283(5407): p. 1476-1481.
    9. Anderson, S., A.T. Bankier, B.G. Barrell, M.H.L. de Bruijn, A.R. Coulson, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger, P.H. Schreier, A.J.H. Smith, R. Staden, and I.G. Young, Sequence and organization of the human mitochondrial genome. Nature, 1981. 290(5806): p. 457-465.
    10. Taylor, R.W. and D.M. Turnbull, Mitochondrial DNA mutations in human disease. Nat Rev Genet, 2005. 6(5): p. 389-402.
    11. Pakendorf, B. and M. Stoneking, MITOCHONDRIAL DNA AND HUMAN EVOLUTION. Annual Review of Genomics and Human Genetics, 2005. 6(1): p. 165-183.
    12. Tuppen, H.A.L., E.L. Blakely, D.M. Turnbull, and R.W. Taylor, Mitochondrial DNA mutations and human disease. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2010. 1797(2): p. 113-128.
    13. Neupert, W., PROTEIN IMPORT INTO MITOCHONDRIA. Annual Review of Biochemistry, 1997. 66(1): p. 863-917.
    14. Lemire, B.D., C. Fankhauser, A. Baker, and G. Schatz, The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical amphiphilicity. Journal of Biological Chemistry, 1989. 264(34): p. 20206-20215.
    15. Allison, D.S. and G. Schatz, Artificial mitochondrial presequences. Proceedings of the National Academy of Sciences of the United States of America, 1986. 83(23): p. 9011-9015.
    16. D Roise, F.T., S J Horvath, J M Tomich, J H Richards, D S Allison, and G Schatz, Amphiphilicity is essential for mitochondrial presequence function. EMBO J., 1988. 7(3): p. 649-653.
    17. Roise, D. and G. Schatz, Mitochondrial presequences. J Biol Chem, 1988. 263(10): p. 4509-11.
    18. Kalousek, F., G. Isaya, and L.E. Rosenberg, Rat liver mitochondrial intermediate peptidase (MIP): purification and initial characterization. EMBO J, 1992. 11(8): p. 2803-9.
    19. Omura, T., Mitochondria-Targeting Sequence, a Multi-Role Sorting Sequence Recognized at All Steps of Protein Import into Mitochondria. J Biochem, 1998. 123(6): p. 1010-1016.
    20. Gavel, Y. and G. von Heijne, Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng., 1990. 4(1): p. 33-37.
    21. Nagley, P., L.B. Farrell, D.P. Gearing, D. Nero, S. Meltzer, and R.J. Devenish, Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cytoplasmically synthesized subunit 8, a polypeptide normally encoded within the organelle. Proceedings of the National Academy of Sciences of the United States of America, 1988. 85(7): p. 2091-2095.
    22. Law, R.H.P., L.B. Farrell, D. Nero, R.J. Devenish, and P. Nagley, Studies on the import into mitochondria of yeast ATP synthase subunits 8 and 9 encoded by artificial nuclear genes. FEBS Letters, 1988. 236(2): p. 501-505.
    23. Manfredi, G., J. Fu, J. Ojaimi, J.E. Sadlock, J.Q. Kwong, J. Guy, and E.A. Schon, Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet, 2002. 30(4): p. 394-399.
    24. Guy, J., X. Qi, F. Pallotti, E.A. Schon, G. Manfredi, V. Carelli, A. Martinuzzi, W.W. Hauswirth, and A.S. Lewin, Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Annals of Neurology, 2002. 52(5): p. 534-542.
    25. Oca-Cossio, J., L. Kenyon, H. Hao, and C.T. Moraes, Limitations of Allotopic Expression of Mitochondrial Genes in Mammalian Cells. Genetics, 2003. 165(2): p. 707-720.
    26. Owen, R., A.P. Lewin, A. Peel, J. Wang, J. Guy, W.W. Hauswirth, P.W. Stacpoole, and T.R. Flotte, Recombinant Adeno-Associated Virus Vector-Based Gene Transfer for Defects in Oxidative Metabolism. Human Gene Therapy, 2000. 11(15): p. 2067-2078.
    27. Galanis, M., R.J. Devenish, and P. Nagley, Duplication of leader sequence for protein targeting to mitochondria leads to increased import efficiency. FEBS Letters, 1991. 282(2): p. 425-430.
    28. Sylvestre, J., A. Margeot, C. Jacq, G. Dujardin, and M. Corral-Debrinski, The Role of the 3' Untranslated Region in mRNA Sorting to the Vicinity of Mitochondria Is Conserved from Yeast to Human Cells. Mol. Biol. Cell, 2003. 14(9): p. 3848-3856.
    29. Kaltimbacher, V., C. Bonnet, G. Lecoeuvre, V. Forster, J.-A. Sahel, and M. Corral-Debrinski, mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA, 2006. 12(7): p. 1408-1417.
    30. Bonnet, C., V. Kaltimbacher, S. Ellouze, S. Augustin, P. Bénit, V. Forster, P. Rustin, J.-A. Sahel, and M. Corral-Debrinski, Allotopic mRNA Localization to the Mitochondrial Surface Rescues Respiratory Chain Defects in Fibroblasts Harboring Mitochondrial DNA Mutations Affecting Complex I or V Subunits. Rejuvenation Research, 2007. 10(2): p. 127-144.
    31. Bonnet, C., S. Augustin, S. Ellouze, P. Bénit, A. Bouaita, P. Rustin, J.-A. Sahel, and M. Corral-Debrinski, The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harboring mutations in these genes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2008. 1783(10): p. 1707-1717.
    32. VRIES, S. and L.A. GRIVELL, Purification and characterization of a rotenone-insensitive NADH: Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. European Journal of Biochemistry, 1988. 176(2): p. 377-384.
    33. Seo, B.B., T. Kitajima-Ihara, E.K.L. Chan, I.E. Scheffler, A. Matsuno-Yagi, and T. Yagi, Molecular remedy of complex I defects: Rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(16): p. 9167-9171.
    34. Seo, B.B., A. Matsuno-Yagi, and T. Yagi, Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1999. 1412(1): p. 56-65.
    35. Seo, B.B., J. Wang, T.R. Flotte, T. Yagi, and A. Matsuno-Yagi, Use of the NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae as a possible cure for complex I defects in human cells. J Biol Chem, 2000. 275(48): p. 37774-8.
    36. Seo, B.B., E. Nakamaru-Ogiso, T.R. Flotte, T. Yagi, and A. Matsuno-Yagi, A single-subunit NADH-quinone oxidoreductase renders resistance to mammalian nerve cells against complex I inhibition. Mol Ther, 2002. 6(3): p. 336-41.
    37. Bai, Y., P. Hajek, A. Chomyn, E. Chan, B.B. Seo, A. Matsuno-Yagi, T. Yagi, and G. Attardi, Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem, 2001. 276(42): p. 38808-13.
    38. Seo, B.B., E. Nakamaru-Ogiso, T.R. Flotte, A. Matsuno-Yagi, and T. Yagi, In Vivo Complementation of Complex I by the Yeast Ndi1 Enzyme. Journal of Biological Chemistry, 2006. 281(20): p. 14250-14255.
    39. Affourtit, C., M.S. Albury, P.G. Crichton, and A.L. Moore, Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Letters, 2002. 510(3): p. 121-126.
    40. Hakkaart, G.A., E.P. Dassa, H.T. Jacobs, and P. Rustin, Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration. EMBO Rep, 2006. 7(3): p. 341-5.
    41. Ojaimi, J., J. Pan, S. Santra, W.J. Snell, and E.A. Schon, An Algal Nucleus-encoded Subunit of Mitochondrial ATP Synthase Rescues a Defect in the Analogous Human Mitochondrial-encoded Subunit. Mol. Biol. Cell, 2002. 13(11): p. 3836-3844.
    42. Bokori-Brown, M. and I.J. Holt, Expression of Algal Nuclear ATP Synthase Subunit 6 in Human Cells Results in Protein Targeting to Mitochondria but No Assembly into ATP Synthase. Rejuvenation Research, 2006. 9(4): p. 455-469.
    43. Vahrenholz, C., G. Riemen, E. Pratje, B. Dujon, and G. Michaelis, Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Current Genetics, 1993. 24(3): p. 241-247.
    44. Denovan-Wright, E.M., A.M. Nedelcu, and R.W. Lee, Complete sequence of the mitochondrial DNA of Chlamydomonas eugametos. Plant Molecular Biology, 1998. 36(2): p. 285-295.
    45. Cardol, P., M. Lapaille, P. Minet, F. Franck, R.F. Matagne, and C. Remacle, ND3 and ND4L Subunits of Mitochondrial Complex I, Both Nucleus Encoded in Chlamydomonas reinhardtii, Are Required for Activity and Assembly of the Enzyme. Eukaryotic Cell, 2006. 5(9): p. 1460-1467.
    46. Pérez-Martı́nez, X., A. Antaramian, M. Vázquez-Acevedo, S. Funes, E. Tolkunova, J. d'Alayer, M.G. Claros, E. Davidson, M.P. King, and D. González-Halphen, Subunit II of Cytochrome c Oxidase in Chlamydomonad Algae Is a Heterodimer Encoded by Two Independent Nuclear Genes. Journal of Biological Chemistry, 2001. 276(14): p. 11302-11309.
    47. Pérez-Martı́nez, X., M. Vázquez-Acevedo, E. Tolkunova, S. Funes, M.G. Claros, E. Davidson, M.P. King, and D. González-Halphen, Unusual Location of a Mitochondrial Gene. Journal of Biological Chemistry, 2000. 275(39): p. 30144-30152.
    48. Funes, S., E. Davidson, M.G. Claros, R. van Lis, X. Pérez-Martı́nez, M. Vázquez-Acevedo, M.P. King, and D. González-Halphen, The Typically Mitochondrial DNA-encoded ATP6 Subunit of the F1F0-ATPase Is Encoded by a Nuclear Gene in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2002. 277(8): p. 6051-6058.
    49. GONZÁLEZ-HALPHEN, D., S. FUNES, X. PÉREZ-MARTÍNEZ, A. REYES-PRIETO, M.G. CLAROS, E. DAVIDSON, and M.P. KING, Genetic Correction of Mitochondrial Diseases: Using the Natural Migration of Mitochondrial Genes to the Nucleus in Chlorophyte Algae as a Model System. Annals of the New York Academy of Sciences, 2004. 1019(Strategies for Engineered Negligible Senescence: Why Genuine Control of Aging May Be Foreseeable): p. 232-239.
    50. Gray, M., B. Lang, R. Cedergren, G. Golding, C. Lemieux, D. Sankoff, M. Turmel, N. Brossard, E. Delage, T. Littlejohn, I. Plante, P. Rioux, D. Saint-Louis, Y. Zhu, and G. Burger, Genome structure and gene content in protist mitochondrial DNAs. Nucl. Acids Res., 1998. 26(4): p. 865-878.
    51. Claros, M.G., J. Perea, Y. Shu, F.A. Samatey, J.-L. Popot, and C. Jacq, Limitations to in vivo Import of Hydrophobic Proteins into Yeast Mitochondria. European Journal of Biochemistry, 1995. 228(3): p. 762-771.
    52. Daley, D.O., R. Clifton, and J. Whelan, Intracellular gene transfer: Reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(16): p. 10510-10515.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE