簡易檢索 / 詳目顯示

研究生: 童凱澤
Tung, Kai-Che
論文名稱: 斑馬魚異種腫瘤移植模型在腫瘤誘發血管新生研究上的應用
The Application of Zebrafish Tumor Xenograft Model in Tumor-Induced Angiogenesis Research
指導教授: 莊永仁
Chuang, Yung-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 39
中文關鍵詞: 血管新生巨噬細胞人類組織蛋白酶S血管新生因子斑馬魚異種腫瘤移植模型斑馬魚卵巢癌
外文關鍵詞: Angiogenesis, Macrophages, Cathepsin S, Vascular endothelial growth factor A, Zebrafish Tumor Xenograft Model, Zebrafish, Ovarian cancer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來斑馬魚生物模型被廣泛地應用於癌症研究。其中,斑馬魚異種腫瘤移植模型具有多項獨特優點,包含:斑馬魚飼養維護設備價格便宜、容易操作、可降低實驗藥物的使用量、在基因體學/蛋白質體學研究上有多種工具與方法可以搭配應用,如斑馬魚胚胎原位雜合技術以及免疫螢光染色技術等。不同於其他常見的模式生物,斑馬魚胚胎具有高度透明性,此優點對於在活體上觀測癌症發展以及癌症誘發之血管新生研究有莫大的助益。因此我們利用此模型來研究癌症誘發之血管新生。
    卵巢癌近年來為婦科癌症死亡率較高的癌症之一。其惡性程度與腫瘤誘發之血管新生有密切的關係。近年來有報導指出,惡性腫瘤以及其誘發之血管新生與其周遭之M2表現型之腫瘤相關巨噬細胞有高度相關性,然而對於腫瘤以及腫瘤相關巨噬細胞之交互作用機制目前仍待釐清。
    本篇研究中,我建立了斑馬魚腫瘤異種移植模型,並結合活體外實驗,釐清在腫瘤微環境中惡性腫瘤誘發血管新生的分子機制。在活體外實驗中,我們發現卵巢癌細胞 (SKOV3 cells) 之血管新生因子 (VEGFA) 以及人類組織蛋白酶S (cathepsin S) 之表現量會在其與M2極化之巨噬細胞共同培養後大量上升。而在斑馬魚異種腫瘤移植模型上,我們發現當M2極化之巨噬細胞與卵巢癌細胞被共同移植時,腫瘤誘發之血管新生現象會顯著提升。我們的結果顯示腫瘤相關巨噬細胞主要是藉由提升卵巢癌細胞之血管新生相關基因表現,促進腫瘤誘發之血管新生。


    Zebrafish model have become a powerful tool in cancer research in recent years. The advantages of the zebrafish tumor xenograft model include: low cost, easy experimentation, reduced dosage for drug test, feasibility of various genetics/proteomics approaches such as whole mount in situ hybridization and whole mount immunocytochemistry. Different from other vertebrate organisms, the transparency of zebrafish embryo allowed us to monitor tumor progression and the tumor-induced angiogenesis in live embryos. In addition, zebrafish tumor xenograft model is much more rapid and cheaper than the current mouse model. Thus, here I aimed to use this model in tumor-induced angiogenesis research.
    Ovarian carcinoma is considered as one of the leading gynecologic cancers with high mortality rate. The tumor malignancy is highly associated with tumor-induced angiogenesis. The tumor-associated macrophages (TAMs) with M2-like phenotype have been reported with tumor malignancy by promoting tumor-induced angiogenesis; however, the mechanisms of the interaction between cancer cells and macrophages are incompletely understood.
    In this study, I established the zebrafish tumor xenograft model to accompany the in vitro cell-based assays to elucidate the molecular mechanism of tumor-induced angiogenesis in the cancer microenvironment. I have identified that the VEGFA and cathepsin S are induced in SKOV3 cells after co-cultured with M2-polarized macrophages. Furthermore, the zebrafish tumor xenograft model indicated when co-injected with M2-polarized macrophages, the tumor-induced angiogenesis was significantly increased. In conclusion, my results revealed that the tumor-associated macrophages could trigger the ovarian cancer cells to up-regulate angiogenesis-related genes in promoting tumor-induced angiogenesis.

    List of contents 中文摘要 I Abstract II 誌謝 III Abbreviations VII 1. Introduction 1 1.1 Angiogenesis and current assay models 1 1.2 The advantages of zebrafish model 2 1.3 Ovarian cancer and tumor-associated macrophages 2 1.4 The angiogenesis-related factors in tumor microenvironment 3 1.5 The objective of this study 4 2.1 Zebrafish tumor xenograft model. 5 2.2 Cell culture and cell preparation 6 2.3 Construction of nls-mCherry expression vector 6 2.4 CL1-5 cell transfection 7 2.5 Cryosection and histochemistry staining 7 2.6 M1 and M2-polarized macrophage preparation 7 2.7 M2 macrophages and ovarian cancer cell co-culture procedure 7 2.8 Real-time PCR analysis 8 2.9 Western blot 8 2.10 Cathepsin S enzyme kinetic assay 9 2.11 Co-injection of SKOV3 cells and M2-polarized macrophages for tumor-induced neovascularization assay 9 3. Results 10 3.1 The control microspheres stayed immobilized at the injection site and did not induce angiogenesis in zebrafish embryos 10 3.2 Cancer cells could survive and proliferate in zebrafish embryo 10 3.3 Tumor-induced angiogenesis in zebrafish embryos 11 3.4 THP-1 cells were induced to M2-polarized macrophages 12 3.5 The VEGFA and cathepsin S gene expression level of ovarian cancer cells were increased after co-culture with M2 cells 13 3.6 M2-polarized macrophages promote SKOV3 tumor-induced angiogenesis in vivo 14 4. Discussion 15 4.1 Zebrafish tumor xenograft model 15 4.1.1 Micropipettes preparation 15 4.1.2 The host vs. graft rejection of tumor xenograft does not occur in zebrafish xenograft model 16 4.1.3 The choice of xenograft injection site 17 4.1.4 The limitations of this model 18 4.2 Tumor-associated macrophages promote ovarian cancer cells induced-angiogenesis 19 List of Tables Table 1. The sequence of primers used for real-time quantitative PCR 25 List of Figures Figure 1. Zebrafish tumor xenograft model 26 Figure 2. The control microspheres did not migrate or induce angiogenesis in zebrafish 27 Figure 3. CL1-5 with endogenous nuclear mCherry indicated human cancer cells could survive and migrate in zebrafish 28 Figure 4. Cancer cell mitosis in zebrafish 29 Figure 5. Cancer cell mass was formed at the perivitelline space 30 Figure 6. No cancer-host immune cell interaction was observed around the tumor xenograft 31 Figure 7. The dynamic process of tumor-induced angiogenesis was monitored for up to 80 hours 32 Figure 8. THP-1 cells were polarized into the M2 macrophages 33 Figure 9. Expression level of CTSS was increased in SKOV3 cells co-cultured with polarized M2 macrophages 34 Figure 10. Polarized M2 macrophages effectively promoted SKOV3 cells to induce angiogenesis 35 Figure 11. Proposed model for the role of tumor-associated macrophages in tumor-induced angiogenesis 36 List of Supplemental Figures Figure S1. The tip of micropipettes was created with blunt end 37 Figure S2. Time-course analysis of tumor cell dissemination throughout the perivitelline space 38 Figure S3. In vivo cell migration assay 39

    Reference:
    1. Baeriswyl, V. & Christofori, G. The angiogenic switch in carcinogenesis. Semin Cancer Biol 19, 329-337 (2009).
    2. Spannuth, W.A., Sood, A.K. & Coleman, R.L. Angiogenesis as a strategic target for ovarian cancer therapy. Nat Clin Pract Oncol 5, 194-204 (2008).
    3. Nussenbaum, F. & Herman, I.M. Tumor angiogenesis: insights and innovations. J Oncol 2010, 132641 (2010).
    4. Staton, C.A., Reed, M.W. & Brown, N.J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90, 195-221 (2009).
    5. Staton, C.A., Stribbling, S. M., Tazzyman, S., Hughes, R., Brown, N. J. & Lewis, C. E. Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85, 233-248 (2004).
    6. Nicoli, S., Ribatti, D., Cotelli, F. & Presta, M. Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67, 2927-2931 (2007).
    7. Serbedzija, G.N., Flynn, E. & Willett, C.E. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3, 353-359 (1999).
    8. Lee, S.L., Rouhi, P., Dahl Jensen, L., Zhang, D., Ji, H., Hauptmann, G., Ingham, P. & Cao, Y. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci U S A 106, 19485-19490 (2009).
    9. Marques, I.J., Weiss, F. U., Vlecken, D. H., Nitsche, C., Bakkers, J., Lagendijk, A. K., Partecke, L. I., Heidecke, C. D., Lerch, M. M. & Bagowski, C. P. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9, 128 (2009).
    10. Nicoli, S. & Presta, M. The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2, 2918-2923 (2007).
    11. Stoletov, K. & Klemke, R. Catch of the day: zebrafish as a human cancer model. Oncogene 27, 4509-4520 (2008).
    12. Freedman, R.S., Ma, Q., Wang, E., Gallardo, S. T., Gordon, I. O., Shin, J. W., Jin, P., Stroncek, D. & Marincola, F. M. Migration deficit in monocyte-macrophages in human ovarian cancer. Cancer Immunol Immunother 57, 635-645 (2008).
    13. Jeon, B.H., Jang, C., Han, J., Kataru, R. P., Piao, L., Jung, K., Cha, H. J., Schwendener, R. A., Jang, K. Y., Kim, K. S., Alitalo, K. & Koh, G. Y. Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res 68, 1100-1109 (2008).
    14. Luo, J.C., Yamaguchi, S., Shinkai, A., Shitara, K. & Shibuya, M. Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Res 58, 2652-2660 (1998).
    15. Coffelt, S.B., Hughes, R. & Lewis, C.E. Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796, 11-18 (2009).
    16. Lamagna, C., Aurrand-Lions, M. & Imhof, B.A. Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80, 705-713 (2006).
    17. Condeelis, J. & Pollard, J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263-266 (2006).
    18. Luo, Y., Zhou, H., Krueger, J., Kaplan, C., Lee, S. H., Dolman, C., Markowitz, D., Wu, W., Liu, C., Reisfeld, R. A. & Xiang, R. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116, 2132-2141 (2006).
    19. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A. & Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25, 677-686 (2004).
    20. Pollard, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4, 71-78 (2004).
    21. Kawamura, K., Komohara, Y., Takaishi, K., Katabuchi, H. & Takeya, M. Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol Int 59, 300-305 (2009).
    22. Kurahara, H., Shinchi, H., Mataki, Y., Maemura, K., Noma, H., Kubo, F., Sakoda, M., Ueno, S., Natsugoe, S. & Takao, S. Significance of M2-Polarized Tumor-Associated Macrophage in Pancreatic Cancer. J Surg Res (2009).
    23. O'Brien, J. & Schedin, P. Macrophages in breast cancer: do involution macrophages account for the poor prognosis of pregnancy-associated breast cancer? J Mammary Gland Biol Neoplasia 14, 145-157 (2009).
    24. Gordon, S. & Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593-604 (2010).
    25. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549-555 (2002).
    26. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22, 231-237 (2010).
    27. Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51 (2010).
    28. Carpini, J.D., Karam, A.K. & Montgomery, L. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis 13, 43-58 (2010).
    29. Paley, P.J., Goff, B.A., Gown, A.M., Greer, B.E. & Sage, E.H. Alterations in SPARC and VEGF immunoreactivity in epithelial ovarian cancer. Gynecol Oncol 78, 336-341 (2000).
    30. Yoneda, J., Kuniyasu, H., Crispens, M. A., Price, J. E., Bucana, C. D. & Fidler, I. J. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 90, 447-454 (1998).
    31. Weis, S.M. & Cheresh, D.A. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437, 497-504 (2005).
    32. Gocheva, V., Wang, H. W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., Berman, T. & Joyce, J. A. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24, 241-255 (2010).
    33. Joyce, J.A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F. Y., Greenbaum, D. C., Hager, J. H., Bogyo, M. & Hanahan, D. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443-453 (2004).
    34. Hazen, L.G., Bleeker, F. E., Lauritzen, B., Bahns, S., Song, J., Jonker, A., Van Driel, B. E., Lyon, H., Hansen, U., Kohler, A. & Van Noorden, C. J. Comparative localization of cathepsin B protein and activity in colorectal cancer. J Histochem Cytochem 48, 1421-1430 (2000).
    35. Kos, J., Sekirnik, A., Kopitar, G., Cimerman, N., Kayser, K., Stremmer, A., Fiehn, W. & Werle, B. Cathepsin S in tumours, regional lymph nodes and sera of patients with lung cancer: relation to prognosis. Br J Cancer 85, 1193-1200 (2001).
    36. Koblinski, J.E., Dosescu, J., Sameni, M., Moin, K., Clark, K. & Sloane, B. F. Interaction of human breast fibroblasts with collagen I increases secretion of procathepsin B. J Biol Chem 277, 32220-32227 (2002).
    37. Mohamed, M.M. & Sloane, B.F. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6, 764-775 (2006).
    38. Rao, J.S. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3, 489-501 (2003).
    39. Tjiu, J.W., Chen, J. S., Shun, C. T., Lin, S. J., Liao, Y. H., Chu, C. Y., Tsai, T. F., Chiu, H. C., Dai, Y. S., Inoue, H., Yang, P. C., Kuo, M. L. & Jee, S. H. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol 129, 1016-1025 (2009).
    40. Honig, M.G. & Hume, R.I. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103, 171-187 (1986).
    41. Kuffler, D.P. Long-term survival and sprouting in culture by motoneurons isolated from the spinal cord of adult frogs. J Comp Neurol 302, 729-738 (1990).
    42. Hall, C., Flores, M.V., Storm, T., Crosier, K. & Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7, 42 (2007).
    43. Liu, F. & Wen, Z. Cloning and expression pattern of the lysozyme C gene in zebrafish. Mech Dev 113, 69-72 (2002).
    44. Stout, R.D., Watkins, S.K. & Suttles, J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 86, 1105-1109 (2009).
    45. Halin, S., Rudolfsson, S.H., Van Rooijen, N. & Bergh, A. Extratumoral macrophages promote tumor and vascular growth in an orthotopic rat prostate tumor model. Neoplasia 11, 177-186 (2009).
    46. Pierson, R.N., 3rd, Winn, H.J., Russell, P.S. & Auchincloss, H., Jr. Xenogeneic skin graft rejection is especially dependent on CD4+ T cells. J Exp Med 170, 991-996 (1989).
    47. Schmidt, P., Krook, H., Maeda, A., Korsgren, O. & Benda, B. A new murine model of islet xenograft rejection: graft destruction is dependent on a major histocompatibility-specific interaction between T-cells and macrophages. Diabetes 52, 1111-1118 (2003).
    48. Lam, S.H., Chua, H.L., Gong, Z., Lam, T.J. & Sin, Y.M. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28, 9-28 (2004).
    49. Davidson, A.J. & Zon, L.I. The 'definitive' (and 'primitive') guide to zebrafish hematopoiesis. Oncogene 23, 7233-7246 (2004).
    50. Fox, A., Mountford, J., Braakhuis, A. & Harrison, L.C. Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection. J Immunol 166, 2133-2140 (2001).
    51. Herbomel, P., Thisse, B. & Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735-3745 (1999).
    52. Mantovani, A., Sica, A., Allavena, P., Garlanda, C. & Locati, M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70, 325-330 (2009).
    53. Duluc, D., Delneste, Y., Tan, F., Moles, M. P., Grimaud, L., Lenoir, J., Preisser, L., Anegon, I., Catala, L., Ifrah, N., Descamps, P., Gamelin, E., Gascan, H., Hebbar, M. & Jeannin, P. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110, 4319-4330 (2007).
    54. Wang, B., Sun, J., Kitamoto, S., Yang, M., Grubb, A., Chapman, H. A., Kalluri, R. & Shi, G. P. Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281, 6020-6029 (2006).
    55. Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., Hanahan, D. & Joyce, J. A. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20, 543-556 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE