研究生: |
楊又權 Yang, You-Cyuan |
---|---|
論文名稱: |
具自動化指骨切割之基於Tanner and Whitehouse方法骨齡判讀雲端服務系統研製 Implementation of a TW3-Based Bone Age Assessment Cloud Service System with Automatic Phalanx Segmentation |
指導教授: |
鐘太郎
Jong, Tai-Lang |
口試委員: |
黃裕煒
Huang, Yue-Wei 謝奇文 Hsieh, Chi-Wen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 骨齡評估 、PHP 、MySQL 、Tanner and Whitehouse method 、指骨切割 |
外文關鍵詞: | Phalanx segmentation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在醫療研究上,骨齡評估可以了解幼童生長情形。藉由骨齡不僅可以得知孩童是否有生長遲緩,甚至可以幫助兒科診斷內分泌系統。以往骨齡評估方法以Tanner and Whitehouse (TW)法和Greulich and Pyle (GP)法較常被使用。GP骨齡評分法需要專業醫師將待測手骨X光與資料庫內的圖像一一比對,找出最相似的圖片得到對應骨齡,其結果容易受到個人的主觀影響。而TW骨齡評估法是取左手X光片影像,再對左手X光影像內的二十個骨頭部位一一評分。一般而言,TW法較為客觀,但相當地耗費時間。雲端運算因其便利性在近年來相當地流行,因此本實驗室已有一套利用PHP和MySQL將TW骨齡評分法應用到雲端伺服器上的系統。但此系統在功能上還有不完備之處且在評分上還是需要花費相當多時間,所以本研究致力於改善系統不便之處及降低TW骨齡評分法所需的時間。若能將TW3法所需評分的骨頭部位先行取出,評分者就不必選取對應的手骨X光影像位置,達成簡化步驟的目的。已有研究可將手骨X光中的指骨部位影像取出,但在有手指併攏或重疊的情況下則無法正常表現。因此本研究提出不論五指在何種情形(正常、併攏或重疊)下,皆可將指骨影像正確取出的方法。有了適用於多數手骨X光影像的自動化指骨切割方法後,將其加入本TW3骨齡評分系統,可減去了評分者找尋及圈選待評估的位置的時間,使得TW骨齡評分更有效率。
In the pediatric applications, bone age assessment is used to evaluate the growth of children. From the bone age, we can not only know that if there is growth retardation in the children, but also predict the adult height of the children. Tanner and Whitehouse III (TW3) method is a method of assessing skeletal age of children. In general, TW3 method has a benefit in reducing subjective factors. However, it will be quite time-consuming because there are twenty bone regions on left-hand X-ray image needed to examine against standard radiograms of each growth stage. In recent years, with the development of computer network, some web-based TW3 scoring systems could be found in the Internet. Although it reduced use of papers when scoring bone age by using TW3 method, evaluators or physicians still need to spend a lot of time scoring their data.
In order to simplify the procedure of TW3 method, it is beneficial to develop a pre-processing algorithm to partition the hand radiograms into regions. Previous studies have reported how to separate the phalanx on radiograms from the background and soft tissue. However, if the fingers on the radiograms overlapped, they could not do the job rightly. In this study, we propose a phalanx segmentation algorithm to extract phalanx ROI fast and precisely. Furthermore, when dealing with the case of radiograms with fingers overlapped, our algorithm works as good as the usual. Moreover, the cloud computing becomes popular by its large data storage property. Thus, a bone age assessment cloud computing system, which is based on our phalanx segmentation algorithm and TW3 method, was built. We hope the physicians or radiologists can evaluate the bone age by TW3 method more efficient with the help of this system.
[1] J. M. Tanner, “Assessment of skeletal maturity and prediction of adult height (TW2 method).” London; New York: Academic Press, 1975.
[2] W. W. Greulich and S. I. Pyle, “Radiographic atlas of skeletal development of the hand and wrist.” Stanford, CA: Stanford University Press, 1959.
[3] W. W. Greulich and S. I. Pyle, “Radiographic Atlas of Skeletal Development of the Hand and Wrist,” 2nd edition. Stanford, CA: Stanford University Press, 1959.
[4] J. M. Tanner, H. Goldstein, N. Cameron, W. B. Saunders, and M. J. R. Healy, “Assessment of skeletal maturity and prediction of adult height (TW3 method)”, 3rd ed. W.B. Saunders, 2001.
[5] V. Gilsanz and O. Ratib, Hand Bone Age: “A Digital Atlas of Skeletal Maturity, “Berlin; Heidelberg; New York: Springer-Verlag, 2005.
[6] D. G. King, D. M. Steventon, M. P. O'Sullivan, A. M. Cook, V. P. Hornsby, I. G. Jefferson, and P. King, “Reproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methods, “ British Journal of Radiology, vol. 67, Sept. 1994.
[7] S. Mahmoodi, B. S. Sharif, E. G. Chester, J. P. Owen, and R. Lee, “Skeletal growth estimation using radiographic image processing and analysis, “IEEE Transactions on Information Technology in Biomedicine, vol. 4, Dec. 2000.
[8] E. Pietka, M. F. McNitt-Gray, M. L. Kuo and H. K. Huang, “Computer-Assisted Phalangeal Analysis in Skeletal Age Assessment,” IEEE Trans. Med. Imag., Vol.10, No.4, Dec. 1991.
[9] E. Pietka, “Computer-Assisted Bone Age Assessment Based on Features Automatically Extracted From A Hand Radiograph, “ Computerized Medical Imaging and Graphics, Vol. 19, No. 3, pp.251-259, 1995.
[10] E. Pietka and H. K. Huang, “Epiphyseal Fusion Assessment Based On Wavelets Decomposition Analysis, “ Computerized Medical Imaging and Graphics, Vol. 19, No. 6, pp.465-472, 1995.
[11] E. Pietka, A. Gertych, S. Pospiech, C. Fei, H. K. Huang, and V. Gilsanz, “Computer -assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction,” IEEE Transactions on Medical Imaging, vol. 20, no. 8, pp. 715-729, Aug. 2001.
[12] A. Gertych, A. Zhang, J. Sayre, K.P. Sylwia, and H. K. Huang, “Bone Age Assessment Of Children Using A Digital Hand Atlas,” Computerized Medical Imaging and Graphics, vol.31, pp.322-331, 2007.
[13] M. Rucci, G. Coppini, I. Nicoletti, D. Cheli and G. Valli, “Automatic Analysis of Hand Radiographs for the Assessment of Skeletal Age: A Subsymbolic Approach, “Computers and Biomedical research, vol.28, pp. 239-256, 1995.
[14] B. C. Fan, C. W. Hsieh, T. L. Jong, C. M. Tiu. “Automatic Bone Age Estimation Based on Carpal Bone Images—A Preliminary Report,” Chinese Medical Journal, pp.203-208, vol.64, Apr.2001.
[15] C. W. Hsieh, T. L. Jong, Y. H. Chou and C. M. Tiu, “Computerized Geometric Features of Carpal Bone for Bone Age Estimation, “Chinese Medical Journal ,May. 2007.
[16] C. W. Hsieh, T. L. Jong, C. H. Chang, C. H. Chen and C. M. Tiu, “The Phalanges-Based Morphological Features For Skeleton Age Assessments, “ 15th Conference on CVGIP02, Hsinchu, Aug. 2002.
[17] C. W. Hsieh, T. L. Jong, and C. M. Tiu, “Bone age estimation based on phalangeal information with fuzzy constrain of carpals,” Medical and Biological Engineering and Computing, vol. 45, no. 3, pp. 283-295, Mar. 2007.
[18] C. W. Hsieh, T. C. Liu, T. L. Jong, C. Y. Chen, C. M. Tiu, D. Y. Chan,“ Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm , “ Optical Engineering, vol.50. Aug. 2011.
[19] 健保特約醫療院所名冊,http://www.nhi.gov.tw/Resource/webdata/23114_2_%E5%81%A5%E4%BF%9D%E7%89%B9%E7%B4%84%E9%86%AB%E7%99%82%E9%99%A2%E6%89%80%E5%90%8D%E5%86%8A(103.01.21%E6%96%B0%E5%A2%9E).pdf
[20] T. W. Ridler and S. Calvard, ”Picture Thresholding Using an Iterative Selection Method, “ IEEE Trans. Syst. Man Cybern, vol.SMC-8,No. 8, Aug. 1978.
[21] F. R. D. Velasco, “Thresholding using the ISODATA Clustering Algorithm, “IEEE Trans. Syst. Man Cybern, vol.SMC-10, No.11, Nov.1980.
[22] A. El-Zaart,” Images thresholding using ISODATA technique with gamma distribution, “ Pattern Recognition and Image Analysis, vol. 20,pp. 29-41 ,Mar.2010.
[23] C. H. Li and C. K. Lee,” MINIMUM CROSS ENTROPY THRESHOLDING, “ Pattern Recognition, vol. 26 ,No. 4, pp. 617-625,1993.
[24] E.T. Jaynes, “On the rationale of maximum-entropy methods, “Processing of IEEE ,vol.70 ,No. 9, Setp.1982.
[25] J. Kittler and J. Illingworth, “Minimum error thresholding, ” Pattern Recognition , 1986
[26] N. Ostu, “A threshold selection method from gray-level histogram, “IEEE Trans. Syst. Man Cybern, vol. SMC-9,pp. 62-66, 1979.
[27] S. Bolboaca, L. Jäntschi, and C. Achimas, “PHP and MySQL medical application based on Tanner Whitehouse standard,” in Proc. the International Scientific Conf. UNITECH'03, vol. 1, No. 20, pp. 304-308, 2003.
[28] C. S. Zou and T. Cen, “Share Tanner-Whitehouse bone algorithm through network,” Chinese Journal of Radiology, vol. 42, no. 11, 2008.
[29] F. Cao, H. K. Huang, E. Pietka, and V. Gilsanz, “A digital hand atlas for web-based bone age assessment: system design and implementation.” Computerized Medical Imaging and Graphics, vol. 24, no. 5, pp. 297-307, Sept.-Oct. 2000.
[30] A. Gertych, A. Zhang, J. Sayre, S. Pospiech-Kurkowska, and H. Huang, “Bone age assessment of children using a digital hand atlas, ” Computer Medical Imaging Graphic, vol. 31, no. 4-5, pp. 322-331, Mar. 2007.
[31] M. Marjan, G. R. Ram, I. MaizatulAkmar, A. K. Sameem, S. Saravanan, W. Shahrom, M. Rohana, A. RukainiHj, N. FarizaHanum, and I. Norisma, “Automated web based system for bone age assessment using histogram technique,” Malaysian Journal of Computer Science, vol. 25, no. 3, pp. 107-121, 2012.
[32] P. C. Chang, Cloud Bone Age Assessment Service Based on Tanner and Whitehouse Method, Master Thesis, Department of EE, NTHU, 2012.
[33] C. H. Chang, An investigation of computerized automatic bone age assessment system based on phalangeal image features. Master Thesis, Department of EE, NTHU,2002
[34] Y. C. Huang, Design and Implementation of an Automatic Phalangeal Segmentation System, Master Thesis, Department of EE, NTHU, July. 2010.
[35] C. S. Yang, Implementation of A Cloud Bone Age Assessment Service System Using Tanner and Whitehouse Method With User Privilege Classification, Master Thesis, Department of EE, NTHU, June. 2013.
[36] C. R. Lee, Cloud Computing. Lecture notes, “Master Thesis, Department of CS, NTHU, 2011.
[37] MathWorks, http://www.mathworks.com/index.html?s_tid=gn_logo.
[38] C. M. Li. The Study of Fully Automatic Bone Age Development Using the Area Ratio of Carpals, Master Thesis, Department of EE, NTHU, 2011.
[39] H. H. Thodberg, S. Kreiborg, A. Juul, and K. D. Pedersen, “The BoneXpert method for automated determination of skeletal maturity,” IEEE Transactions on Medical Imaging, vol. 28, no. 1, pp. 52-66, Jan. 2009.
[40] 相對熵,http://zh.wikipedia.org/zh-tw/%E7%9B%B8%E5%AF%B9%E7%86%B5
[41] M. B. Windy, H. Melissa, A. F. Briony, S. M. Breedlove, “Masculinized Finger Length Patterns in Human Males and Females with Congenital Adrenal Hyperplasia,” Hormones and Behavior, vol. 42, issue. 4, pp. 380-386, Dec.2002.