簡易檢索 / 詳目顯示

研究生: 洪婉慈
Hung, Wan-Tzu
論文名稱: 利用果蠅模式動物探討IBMPFD 的致病機制
Investigating the pathogenic mechanism of IBMPFD in Drosophila
指導教授: 桑自剛
Sang, Tzu-Kang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 65
中文關鍵詞: 致病機制
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract ............................................................................................................................... II 中文摘要 ............................................................................................................................. IV Acknowledgement .............................................................................................................. VI Introduction........................................................................................................................ 1 Materials and Methods ....................................................................................................... 8 Results ............................................................................................................................... 12 Human VCP antibody could detect Drosophila TER94 ........................................................ 12 The eye degenerative phenotype depends on TER94 mutants that corresponded to IBMPFD 12 ATPase activity plays a crucial role in TER94 function ........................................................ 13 TER94 ATPase defect impair ERAD .................................................................................... 14 The function of disease proteins are not functional compatible to wild type TER94 .............. 15 Study the hexamerization of TER94 in fly model .................................................................. 16 Monomeric IBMPFD disease protein is less toxic in fly eye model ....................................... 17 Monomeric TER94 is toxic .................................................................................................. 19 Overexpress an ER membrane proterin, Derlin-1, can suppress the toxicity of disease protein .......................................................................................................................................... 20 No evident ERAD defect in IBMPFD alleles ........................................................................ 21 Overexpressing the substrate of ubiquitin proteasome system (UPS), CL1-GFP, could modify the toxicity of disease protein .............................................................................................. 23 Increase ATP production through dietary restriction can suppress eye degeneration caused by disease protein ................................................................................................................ 24 Light stimulus demonstrates energy consumption modifies IBMPFD toxicity in fly photoreceptors .................................................................................................................... 25 Discussion .......................................................................................................................... 27 Figures ............................................................................................................................... 33 References......................................................................................................................... 61

    Bersano, A., Del Bo, R., Lamperti, C., Ghezzi, S., Fagiolari, G., Fortunato, F.,
    Ballabio, E., Moggio, M., Candelise, L., Galimberti, D., et al. (2007).
    Inclusion body myopathy and frontotemporal dementia caused by a novel
    VCP mutation. Neurobiol Aging.
    Confalonieri, F., and Duguet, M. (1995). A 200-amino acid ATPase module in search
    of a basic function. Bioessays 17, 639-650.
    DeLaBarre, B., and Brunger, A.T. (2003). Complete structure of
    p97/valosin-containing protein reveals communication between nucleotide
    domains. Nat Struct Biol 10, 856-863.
    Djamshidian, A., Schaefer, J., Haubenberger, D., Stogmann, E., Zimprich, F., Auff, E.,
    and Zimprich, A. (2009). A novel mutation in the VCP gene (G157R) in a
    german family with inclusion-body myopathy with paget disease of bone and
    frontotemporal dementia. Muscle Nerve 39, 389-391.
    Duennwald, M.L., and Lindquist, S. (2008). Impaired ERAD and ER stress are early
    and specific events in polyglutamine toxicity. Genes Dev 22, 3308-3319.
    Escoubas, P., Palma, M.F., and Nakajima, T. (1995). A microinjection technique using
    Drosophila melanogaster for bioassay-guided isolation of neurotoxins in
    arthropod venoms. Toxicon 33, 1549-1555.
    Frohlich, K.U., Fries, H.W., Rudiger, M., Erdmann, R., Botstein, D., and Mecke, D.
    (1991). Yeast cell cycle protein CDC48p shows full-length homology to the
    mammalian protein VCP and is a member of a protein family involved in
    secretion, peroxisome formation, and gene expression. J Cell Biol 114,
    443-453.
    Halawani, D., Leblanc, A., Rouiller, I., Michnick, S.W., Servant, M.J., and Latterich,
    M. (2009). Hereditary inclusion body myopathy-linked p97/VCP mutations
    in the NH2-domain and the D1 ring modulate p97/VCP ATPase activity and
    D2 AAA+ ring conformation. Mol Cell Biol.
    Haubenberger, D., Bittner, R.E., Rauch-Shorny, S., Zimprich, F., Mannhalter, C.,
    Wagner, L., Mineva, I., Vass, K., Auff, E., and Zimprich, A. (2005). Inclusion
    body myopathy and Paget disease is linked to a novel mutation in the VCP
    gene. Neurology 65, 1304-1305.
    Hubbers, C.U., Clemen, C.S., Kesper, K., Boddrich, A., Hofmann, A., Kamarainen, O.,
    Tolksdorf, K., Stumpf, M., Reichelt, J., Roth, U., et al. (2007). Pathological
    consequences of VCP mutations on human striated muscle. Brain 130,
    381-393.
    62
    Jackson, G.R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P.W., MacDonald,
    M.E., and Zipursky, S.L. (1998). Polyglutamine-expanded human huntingtin
    transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron
    21, 633-642.
    Jackson, G.R., Wiedau-Pazos, M., Sang, T.K., Wagle, N., Brown, C.A., Massachi, S.,
    and Geschwind, D.H. (2002). Human wild-type tau interacts with wingless
    pathway components and produces neurofibrillary pathology in Drosophila.
    Neuron 34, 509-519.
    Ju, J.S., Miller, S.E., Hanson, P.I., and Weihl, C.C. (2008). Impaired protein aggregate
    handling and clearance underlie the pathogenesis of p97/VCP-associated
    disease. J Biol Chem 283, 30289-30299.
    Karata, K., Inagawa, T., Wilkinson, A.J., Tatsuta, T., and Ogura, T. (1999). Dissecting
    the role of a conserved motif (the second region of homology) in the AAA
    family of ATPases. Site-directed mutagenesis of the ATP-dependent protease
    FtsH. J Biol Chem 274, 26225-26232.
    Kaur, J., and Bachhawat, A.K. (2009). A modified Western blot protocol for enhanced
    sensitivity in the detection of a membrane protein. Anal Biochem 384,
    348-349.
    Kimonis, V.E., Mehta, S.G., Fulchiero, E.C., Thomasova, D., Pasquali, M., Boycott,
    K., Neilan, E.G., Kartashov, A., Forman, M.S., Tucker, S., et al. (2008).
    Clinical studies in familial VCP myopathy associated with Paget disease of
    bone and frontotemporal dementia. Am J Med Genet A 146A, 745-757.
    Koller, K.J., and Brownstein, M.J. (1987). Use of a cDNA clone to identify a
    supposed precursor protein containing valosin. Nature 325, 542-545.
    Kondo, H., Rabouille, C., Newman, R., Levine, T.P., Pappin, D., Freemont, P., and
    Warren, G. (1997). p47 is a cofactor for p97-mediated membrane fusion.
    Nature 388, 75-78.
    Lilley, B.N., and Ploegh, H.L. (2004). A membrane protein required for dislocation of
    misfolded proteins from the ER. Nature 429, 834-840.
    Maurizi, M.R., and Li, C.C. (2001). AAA proteins: in search of a common molecular
    basis. International Meeting on Cellular Functions of AAA Proteins. EMBO
    Rep 2, 980-985.
    Meyer, H.H., Shorter, J.G., Seemann, J., Pappin, D., and Warren, G. (2000). A
    complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to
    ubiquitin and nuclear transport pathways. EMBO J 19, 2181-2192.
    Moir, D., Stewart, S.E., Osmond, B.C., and Botstein, D. (1982). Cold-sensitive
    cell-division-cycle mutants of yeast: isolation, properties, and
    pseudoreversion studies. Genetics 100, 547-563.
    63
    Nagahama, M., Suzuki, M., Hamada, Y., Hatsuzawa, K., Tani, K., Yamamoto, A., and
    Tagaya, M. (2003). SVIP is a novel VCP/p97-interacting protein whose
    expression causes cell vacuolation. Mol Biol Cell 14, 262-273.
    Neuwald, A.F., Aravind, L., Spouge, J.L., and Koonin, E.V. (1999). AAA+: A class of
    chaperone-like ATPases associated with the assembly, operation, and
    disassembly of protein complexes. Genome Res 9, 27-43.
    Niven, J.E., Anderson, J.C., and Laughlin, S.B. (2007). Fly photoreceptors
    demonstrate energy-information trade-offs in neural coding. PLoS Biol 5,
    e116.
    Niven, J.E., and Laughlin, S.B. (2008). Energy limitation as a selective pressure on
    the evolution of sensory systems. J Exp Biol 211, 1792-1804.
    Niven, J.E., Vahasoyrinki, M., and Juusola, M. (2003). Shaker K(+)-channels are
    predicted to reduce the metabolic cost of neural information in Drosophila
    photoreceptors. Proc Biol Sci 270 Suppl 1, S58-61.
    Ogura, T., and Wilkinson, A.J. (2001). AAA+ superfamily ATPases: common
    structure--diverse function. Genes Cells 6, 575-597.
    Pamnani, V., Tamura, T., Lupas, A., Peters, J., Cejka, Z., Ashraf, W., and Baumeister,
    W. (1997). Cloning, sequencing and expression of VAT, a CDC48/p97
    ATPase homologue from the archaeon Thermoplasma acidophilum. FEBS
    Lett 404, 263-268.
    Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B.,
    Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., et al. (2007).
    HDAC6 rescues neurodegeneration and provides an essential link between
    autophagy and the UPS. Nature 447, 859-863.
    Patel, S., and Latterich, M. (1998). The AAA team: related ATPases with diverse
    functions. Trends Cell Biol 8, 65-71.
    Peters, J.M., Harris, J.R., Lustig, A., Muller, S., Engel, A., Volker, S., and Franke,
    W.W. (1992). Ubiquitous soluble Mg(2+)-ATPase complex. A structural
    study. J Mol Biol 223, 557-571.
    Peters, J.M., Walsh, M.J., and Franke, W.W. (1990). An abundant and ubiquitous
    homo-oligomeric ring-shaped ATPase particle related to the putative vesicle
    fusion proteins Sec18p and NSF. EMBO J 9, 1757-1767.
    Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N., and Bar-Nun, S. (2002).
    AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic
    reticulum-associated protein degradation. Mol Cell Biol 22, 626-634.
    Rabouille, C., Kondo, H., Newman, R., Hui, N., Freemont, P., and Warren, G. (1998).
    Syntaxin 5 is a common component of the NSF- and p97-mediated
    reassembly pathways of Golgi cisternae from mitotic Golgi fragments in
    64
    vitro. Cell 92, 603-610.
    Rouiller, I., Butel, V.M., Latterich, M., Milligan, R.A., and Wilson-Kubalek, E.M.
    (2000). A major conformational change in p97 AAA ATPase upon ATP
    binding. Mol Cell 6, 1485-1490.
    Rubin, G.M., and Spradling, A.C. (1982). Genetic transformation of Drosophila with
    transposable element vectors. Science 218, 348-353.
    Ryoo, H.D., Domingos, P.M., Kang, M.J., and Steller, H. (2007). Unfolded protein
    response in a Drosophila model for retinal degeneration. EMBO J 26,
    242-252.
    Sang, T.K., and Ready, D.F. (2002). Eyes closed, a Drosophila p47 homolog, is
    essential for photoreceptor morphogenesis. Development 129, 143-154.
    Schroder, M., and Kaufman, R.J. (2005). ER stress and the unfolded protein response.
    Mutat Res 569, 29-63.
    Schroder, R., Watts, G.D., Mehta, S.G., Evert, B.O., Broich, P., Fliessbach, K., Pauls,
    K., Hans, V.H., Kimonis, V., and Thal, D.R. (2005). Mutant
    valosin-containing protein causes a novel type of frontotemporal dementia.
    Ann Neurol 57, 457-461.
    Tiwari, S., and Weissman, A.M. (2001). Endoplasmic reticulum (ER)-associated
    degradation of T cell receptor subunits. Involvement of ER-associated
    ubiquitin-conjugating enzymes (E2s). J Biol Chem 276, 16193-16200.
    Uchiyama, K., Jokitalo, E., Kano, F., Murata, M., Zhang, X., Canas, B., Newman, R.,
    Rabouille, C., Pappin, D., Freemont, P., et al. (2002). VCIP135, a novel
    essential factor for p97/p47-mediated membrane fusion, is required for Golgi
    and ER assembly in vivo. J Cell Biol 159, 855-866.
    Vale, R.D. (2000). AAA proteins. Lords of the ring. J Cell Biol 150, F13-19.
    Vembar, S.S., and Brodsky, J.L. (2008). One step at a time: endoplasmic
    reticulum-associated degradation. Nat Rev Mol Cell Biol 9, 944-957.
    Wang, Q., Song, C., Irizarry, L., Dai, R., Zhang, X., and Li, C.C. (2005).
    Multifunctional roles of the conserved Arg residues in the second region of
    homology of p97/valosin-containing protein. J Biol Chem 280, 40515-40523.
    Wang, Q., Song, C., and Li, C.C. (2003a). Hexamerization of p97-VCP is promoted
    by ATP binding to the D1 domain and required for ATPase and biological
    activities. Biochem Biophys Res Commun 300, 253-260.
    Wang, Q., Song, C., and Li, C.C. (2004). Molecular perspectives on p97-VCP:
    progress in understanding its structure and diverse biological functions. J
    Struct Biol 146, 44-57.
    Wang, Q., Song, C., Yang, X., and Li, C.C. (2003b). D1 ring is stable and
    nucleotide-independent, whereas D2 ring undergoes major conformational
    65
    changes during the ATPase cycle of p97-VCP. J Biol Chem 278,
    32784-32793.
    Watts, G.D., Wymer, J., Kovach, M.J., Mehta, S.G., Mumm, S., Darvish, D., Pestronk,
    A., Whyte, M.P., and Kimonis, V.E. (2004). Inclusion body myopathy
    associated with Paget disease of bone and frontotemporal dementia is caused
    by mutant valosin-containing protein. Nat Genet 36, 377-381.
    Weihl, C.C., Miller, S.E., Hanson, P.I., and Pestronk, A. (2007). Transgenic expression
    of inclusion body myopathy associated mutant p97/VCP causes weakness
    and ubiquitinated protein inclusions in mice. Hum Mol Genet 16, 919-928.
    Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D.
    (2004). Sirtuin activators mimic caloric restriction and delay ageing in
    metazoans. Nature 430, 686-689.
    Woodman, P.G. (2003). p97, a protein coping with multiple identities. J Cell Sci 116,
    4283-4290.
    Yang, M., Omura, S., Bonifacino, J.S., and Weissman, A.M. (1998). Novel aspects of
    degradation of T cell receptor subunits from the endoplasmic reticulum (ER)
    in T cells: importance of oligosaccharide processing, ubiquitination, and
    proteasome-dependent removal from ER membranes. J Exp Med 187,
    835-846.
    Ye, Y., Meyer, H.H., and Rapoport, T.A. (2001). The AAA ATPase Cdc48/p97 and its
    partners transport proteins from the ER into the cytosol. Nature 414,
    652-656.
    Ye, Y., Meyer, H.H., and Rapoport, T.A. (2003). Function of the p97-Ufd1-Npl4
    complex in retrotranslocation from the ER to the cytosol: dual recognition of
    nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol
    162, 71-84.
    Ye, Y., Shibata, Y., Yun, C., Ron, D., and Rapoport, T.A. (2004). A membrane protein
    complex mediates retro-translocation from the ER lumen into the cytosol.
    Nature 429, 841-847.
    Zhang, X., Shaw, A., Bates, P.A., Newman, R.H., Gowen, B., Orlova, E., Gorman,
    M.A., Kondo, H., Dokurno, P., Lally, J., et al. (2000). Structure of the AAA
    ATPase p97. Mol Cell 6, 1473-1484.
    Zwickl, P., and Baumeister, W. (1999). AAA-ATPases at the crossroads of protein life
    and death. Nat Cell Biol 1, E97-98.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE